Curriculum Map: Physics year 13 spring term

	Teacher 1	Teacher 2
Content	5.3 – oscillations	6.3 – electromagnetism
Declarative	Define displacement, amplitude, frequency, time period, angular frequency, phase	Define magnetic field, solenoid, magnetic flux and magnetic flux density,
knowledge	difference, isochronous, simple harmonic motion, damping, free oscillation, natural	weber, fleming's left hand rule, the motor effect, electromagnetic
'l Know'	frequency, forced oscillation, driving frequency, resonance	induction, induced emf, flux linkage, faraday's law, Lenz's law, generator,
	Draw the graphs of displacement, velocity and acceleration against time	alternative current, transformer, efficiency
	To recall the conditions for an object undergoing simple harmonic motion	To know the fields lines around a bar magnet
	To give the energy transformations when an object undergoes SHM	To know factors that affect the strength of magnetic field of a wire
	To state what happens to the amplitude of an oscillation when damping takes place	To know the fields lines around the Earth
	To know the difference between damping and critical damping	To know the rules of field lines
	To know the practical uses for resonance	To give the motion of a charged particle in a magnetic field
	To know the effect of damping on the amplitude of the resonant oscillation	To recall the graphs of how the emf and flux varies with time
	5.4 – gravitational fields	To know the structure of a generator
	Define gravitational field, gravitational field strength, Newton's law of gravitation,	To know the difference between a step up and step down transformer
	kepler's 3 rd law, geostationary orbit, gravitational potential energy, gravitational	To know the relationship between the number of turns and the voltage in
	potential, escape velocity	the transformer
	To know the rules of gravitational field lines	6.4 – nuclear and particle physics
	To know the field patterns around a point mass	Define proton number, isotope, nucleon number, strong nuclear force,
	To recall examples of geostationary satellites	Hadrons, leptons, quarks, neutrinos, weak nuclear force, radioactive
	To know the variation of gravitational field strength with distance	decay, activity, half life, decay constant, carbon dating, annihilation, mass
	To state all 3 of Kepler's laws	defect, binding energy pair production, chain reaction, control rod,
	To know that the acceleration due to gravity is the same as the gravitational field	moderator
	strength	To know the alpha particle scattering experiment
	To know that gravitational potential is negative as force is an attractive force	To recall the nuclear model of the atom
	6.5 – medical physics	To know the connection between nuclear radius and density
	Define x rays, intensity, Compton scattering, attenuation, contract media, CAT scan,	To know the properties of each of the fundamental particles
	gamma camera, collimator, scintillator, photomultiplier tube, PET scan, ultrasound,	To recall the differences between alpha, beta and gamma rays including
	transducer, piezoelectric effect, acoustic impedance, impedance matching, the	penetration power, ionisation ability, and the nature of particle
	doppler effect.	To state the products of each type of radioactive decay
	To know the variation of intensity of x rays with wavelength	to know that radioactive decay is a random and spontaneous process
	To know what contrast media helps with	to know the equipment used to measure the radioactive decay of a
	To recall advantages of a CAT scan compared to an x ray	radioactive source.
	To know the function of a tracer and the conditions for choosing the correct tracer	To provide the graph for binding energy against nucleon number
	To know the functions of a gamma camera and what the gamma camera is used for	To know the difference between nuclear fusion and nuclear fission
	To state comparisons between a PET scan and a CAT scan	To recall the requirements needed for something to undergo fission and
	To know the uses of a PET scan	fusion.
	To know uses of ultrasound and to compare it to other medical techniques	
	To know that there are different types of scan	

Skills	5.3 – oscillations	6.3 – electromagnetism
Procedural	To know how to calculate the frequency and time period of an oscillation	To use the equation for magnetic flux and flux density
Knowledge	To calculate angular frequency and how to derive it from the definition	To know how to calculate the Area that is perpendicular to the magnetic
'I know how to'	To describe the motion of an oscillating mass on a spring	field and to explain why this affects the flux
	To explain the variation of force at different points of an oscillating mass	To explain what happens to 2 magnetic fields in one area
	To use the definition of SHM to derive an equation for acceleration	To use left hand rule to determine the direction of the force acting on a
	To use the equations for velocity and acceleration for SHM	conductor
	To use knowledge of oscillations and the equations for velocity and acceleration to	To use the equation to calculate the force acting on a current carrying
	give expressions for maximum acceleration and velocity	wire
	To draw graphs of velocity or acceleration from one of displacement of velocity	To describe an experiment that will investigate the force acting on a
	(applying knowledge of motion)	current carrying wire
	Describe how the velocity, acceleration and displacement all vary over time in terms	To describe the motion of a charged particle in a uniform magnetic field
	of amplitude.	To use the equation for a moving particle in a magnetic field
	To conduct an experiment that investigates factors affecting SHM	To derive an equation for the radius of the motion of a charged particle in
	Calculate the kinetic or gravitational energy in an oscillation	a magnetic field
	To explain the energy transformations that take place for a mass on a spring	To connect electric fields and magnetic fields and look at the motion of
	Describe the effects of damping	particles
	Use knowledge of SHM to explain how Barton's pendulum works	To explain how emf is induced in a current wire
	5.4 – gravitational fields	To describe the factors that increase the emf
	To know how to draw gravitational field lines around masses	To use the right hand rule to determine the direction of the current on a
	To calculate the gravitational field strength using 2 equations	conductor when it is moved in a magnetic field
	To use newton's law of gravitation to solve proportionalities as well as calculating	To explain how the magnetic flux varies through the magnetic field
	variables	To use the equation for flux linkage
	Describe the effect of the force when changing the mass or the distance apart	To use the equation for faraday's law
	To derive an equation for gravitational field strength from law of gravitation	To use lenz's law to explain the direction of the magnetic field produced
	To explain the variation in field strength with distance	in a solenoid
	To derive Kepler's 3 rd law from circular motion theory	To combine and use faraday's law and lenz's law
	To use Kepler's 3 rd law to solve problems	To describe the variation of current with time for AC generator
	To explain motion of a geostationary orbit and how it varies with time	To explain the variation of emf and flux with time for a generator
	To calculate both gravitational potential and potential energy	To explain how a transformer works
	To explain the variation of potential with distance	To use the equations for number of turns, power and voltage of
	to calculate the change in gravitation between 2 points in a gravitational field	transformers
	to calculate the escape velocity of the Earth using knowledge of kinetic energy	To use knowledge of efficiency to calculate power loss in the national grid
	6.5 – medical physics	6.4 – nuclear and particle physics
	To explain how x rays are produced	To know how to describe Rutherford's alpha particle scattering
	To calculate the energy of an x ray photon	experiment
	To describe the x ray production processes of simple scattering, Compton scattering,	To explain the results of the scattering experiment
	and pair production	To calculate the nucleon and atomic numbers for different elements
	To explain how the intensity varies with thickness	To calculate the nuclear density and the strong nuclear force
	To use the equation for attenuation	To describe how the strength of the strong nuclear force varies with
L	To describe how x rays are absorbed by the patient	separation

	To surplain house CAT economica	
	To explain how a CAT scan works	To describe an experiment that looks at radioactive decay
	To describe how a tracer works	To know how to write decay equations for alpha beta plus, beta minus
	To explain how the components of the gamma camera work	and gamma
	To explain how a PET scan works	To label a graph of nucleon number with when it is stable or unstable
	To describe how a PET scan is carried out	To use the equation for activity to identify decay constant
	To describe how ultrasound travels through the body	To combine equations to produce an equation for half life
	To explain how ultrasound waves are detected	To use the exponential equations for activity and nucleon number
	To use a graph showing the intensity of the reflected waves to calculate the distance	To know how to use the decay curves to calculate half life
	the wave has travelled	To know how to use natural logs to measure the decay constant
	To know how to calculate the image from reflected time values	To use data to calculate the number of half lives that have happened
	To explain how a piezoelectric crystal produces ultrasound waves	To use spreadsheets to model decay
	To calculate acoustic impedance	To describe an experiment used to measure the half life of radioactive
	To use acoustic impedance to calculate the variation in intensity	decay
	To know how impedance matching works and why it is important	Use the half life of a sample to predict the approximate age
	To use the doppler equation to calculate the velocity of blood flow	To use the equation linking mass and energy
	To explain how the doppler effect can be used to find the velocity of blood flow	To use knowledge of mass defect to discuss what happens when particles
	qualitatively	bind
		To describe the binding energy graph and use it draw conclusions on the
		energy released
		Describe how a chain reaction works
		Describe the components of a nuclear reactor
		Explain what a moderator does and why it is important
		To write equations for the fusion reactions that happen in stars
Strategies	5.3 – oscillations	6.3 – electromagnetism
Conditional	Interpret diagrams for oscillating masses or pendulums and explain the variation to	To interpret diagrams of magnetic flux to calculate the area
Knowledge	the force or the acceleration	To apply knowledge of the motor effect to different situations to predict
'I know when to'	To know when the SHM equations should have max acceleration or max velocity	the movement and to calculate the size of the force
T KHOW WHEN LO	To draw conclusions for a pendulum that satisfy the conditions for SHM	
		To evaluate the experiment on the flux density to highlight an
	To interpret the graphs for oscillations of displacement, velocity or acceleration to	uncertainties and how to improve accuracy
	evaluate the data or draw conclusions about the oscillation	Apply knowledge of Flemings rules to explain the motion of charged
	To analyse the graphs of motion to comment on the variation of	particles in electric and magnetic fields
	displacement/velocity or acceleration	To know when to decide on the motion of a magnet to produce the
	To interpret the energy graphs to draw conclusions on what transformations are	magnetic field in a certain direction (using Lenz's law)
	taking place during each oscillation	To interpret graphs of flux or emf against time and use them to explain
	To know when to use a forces oscillation or a free oscillation	how a generator works
	To apply knowledge of resonance to explain the vibrations of different situations and	Evaluate the efficiency of a transformer and to apply electricity
	any dangers there may be.	knowledge to calculate power loss and resistance
	To evaluate data from a practical investigate factors affecting SHM to draw	To know when to use each transformer equation for the question
	conclusions and address uncertainties.	6.4 – nuclear and particle physics
	5.4 – gravitational fields	To know when to choose which type of radioactivity is most suitable for

	To interpret graph of force variation with distance for gravitational energy and to	To evaluate the experiment comparing radioactive decay to look at
	draw conclusions and calculate work done	improving accuracy
	To apply knowledge of year 12 theory to derive formula for escape velocity	To evaluate the limitations of carbon dating
	To know when to use theory for potential compared to potential energy	To interpret decay curves to discuss relationships, half life, and also
	To compare and contrast gravitational fields with electric fields	discuss the differences in decay
	To apply knowledge of circular motion to derive Kepler's 3 rd law	Draw conclusions from the half life practical and discuss any associated
	Interpret diagrams connected to Newton's law of gravitation to draw conclusions and	limitations
	to predict result when changing a variable.	To use the binding energy graph to know when an atom will undergo
	6.5 – medical physics	fission or fusion
	To know when to apply the different methods of x ray production and the reasons	To interpret energy data and use these to calculate the mass involved in
	why each is used	reactions
	To discuss and compare and decide whether a CAT scan or an x ray is the better option	To know when to decide if nuclear fusion and fission is a good idea based
	To evaluate the use of medical tracers based on evidence given	on evidence provided. This includes the impact of environmental impact
	To compare and contrast PET scans with CAT scans	of nuclear waste
	To interpret the diagrams for PET scans and to use them to explain how the process	
	works	
	To draw conclusions about the ultrasound from a graph of the results, analysing the	
	data to calculate the distance away	
	To know when to describe an A scan or a B scan	
	To apply knowledge of the doppler effect to explain how you can measure the flow of	
	blood	
Key Questions	How does resonance happen? What is simple harmonic motion? How does a PET scan,	What are the impacts of radioactive decay, nuclear fusion and nuclear
	CAT scan, X rays gamma camera work? What are the implications of each diagnostic	fission? How many particles are there in the universe? How does a
	technique? How does a satellite stay in orbit?	generator work? How can electricity be used to explain the rotational
		movement of a generator? How is electricity linked with magnetism?
Assessment	End of module 5.3 assessment. PPE in February assessing all year 13 content, medical	end of electromagnetism topic in February and it is assessed in PPEs at
topics	physics assessed around Easter	end of Feb. Radioactivity topic assessed round Easter in end of topic
		assessment
Cross curricular	Ultrasound, x rays and PET scans – Biology	maths – rearranging equations, graphical analysis
links/Character	Rearranging equations and interpreting graphs - maths	DT electronics – electromagnetism
Education	Resonance and frequency – music	Chemistry – decay and minding energy with nuclear density and nuclear
	Satellites – geography	forces
		Geography – environmental impacts of nuclear fission and fusion
		History – history of the atom and experiments that led up to the nuclear
		model.