Curriculum Map: Physics year 13 autumn term

	Teacher 1	Teacher 2	
Content	5.1 – thermal physics	6.1 – capacitors	
Declarative	To define temperature, absolute zero, thermal equilibrium, internal energy, Brownian	To define capacitance, charge, farad, capacitor, time constant,	
knowledge	motion, specific heat capacity, moles, an ideal gas, mean square speed, root mean	exponential decay,	
'l Know'	square speed, the Boltmann constant	To know the base units of farads	
	To state properties of solids liquids and gases	To state what makes up a capacitor	
	To know the difference in structure of states of matter	To know the rules of capacitors in series and parallel	
	To recall the changes of state	To give uses of capacitors	
	To know the equipment to find the specific heat capacity of a metal	To know that the work done is the area under a charge, voltage graph	
	To recall the difference between latent heat of fusion and vaporisation	To know the charge and discharge graphs for current, voltage and charge	
	To know the shape of a cooling curve	To know the circuit diagrams that allow the charging graphs	
	To know the relationship between moles and number of particles	To know the purpose of a resistor in a capacitor resistor circuit	
	To know the assumptions of the kinetic model of a gas	6.2 – electric fields	
	To recall Boyles law and Charles' law	Define electric field, electric field lines, electric field strength, coulombs	
	To define the equation of state for an ideal gas	low, permittivity of free space, electric potential, electric potential energy	
	To give the relationships between pressure, temperature and volume for gases	To know the field lines between charged objects and around a single	
	5.2 – circular motion	charged object	
	To define the radian, angular velocity, period, centripetal acceleration, centripetal	To know the rules of electric field lines	
	force	To recall the difference between uniform and non uniform field	
	To know the different between speed and velocity in context of circular motion	To know that a capacitor uses electric field theory	
	To recall examples of centripetal force	To give the graph of how potential energy varies with distance	
		To know that the area under a force distance graph is equal to work done	
Skills	5.1 – thermal physics	6.1 – capacitors	
Procedural	To know how to convert between degrees and kelvin	To describe how a capacitor charges and discharges in terms of the	
Knowledge	To describe heat transfer using knowledge of thermal equilibrium	movement of electrons	
'I know how to'	Use kinetic model of matter to explain properties of materials including state changes,	To use the equation for capacitance	
	physical properties and motion.	To describe an experiment to measure the capacitance of a capacitor	
	To know how to use the equation for density	To use the rules of circuits to derive the series and parallel rules for	
	To compare internal energies for solids and liquids	capacitors	
	To use knowledge of gas motion to explain how the internal energy is different for a	To solve problems involving series and parallel capacitors	
	gas	To conduct an experiment to investigate series and parallel combinations	
	Compare Brownian motion in liquids and gases	To use the energy equation for a capacitor	
	To use the equation for specific heat capacity	To explain how the capacitor releases its stored energy	
	To describe the experiment to calculate the specific heat capacity of a metal block	To describe explain the charging and discharging curves	
	To use the equation for latent heat	To use the charging and discharging equations for charge, current and	
	To describe and explain the cooling curve for a material	voltage	
	To describe an experiment that can investigate latent heat	To describe an experiment to measure the charging over time	
	To connect number of particles with the moles using avogadro's number	To rearrange the equation for discharging using the time constant	
	Calculate the molar mass for monoatomic and diatomic gases	To explain how the equation for discharging changes when using the time	
	To use the equation for pressure	constant	

	To calculate the root mean square speed To use Boyle's law and Charles' law to explain the relationship between pressure, volume and temperature To conduct an experiment that investigates Boyle's law To connect Boyle's law and Charles' law to derive ideal gas equation To describe the shapes of the graphs for pressure, temperature and volume To use the ideal gas equation To use the Boltzmann constant in the ideal gas equation To explain the relationship between absolute temperature and the kinetic energy of a gas molecule 5.2 – circular motion To use the equations for angular velocity using knowledge of circular motion To use the equations for angular velocity using time period and frequency To explain the changes in velocity when an object undergoes circular motion To use equation for centripetal acceleration and to derive it from normal acceleration To derive entripetal force equation from centripetal acceleration To describe an experiment to measure the speed of rotation with changing force	To know how to use natural logs to determine the initial charge or the time constant To know how to use spreadsheets to model capacitor discharge To use a graph of natural logs against time to determine values about capacitors 6.2 – electric fields To know how to use the equation for force for a point sphere To use the rules of electric fields to draw field lines around charged objects To use the definition and equation of coloumbs law To calculate the resultant force acting on 2 charged objects To use the equations for electric fields and gravitational fields To know how to compare electric fields and gravitational fields To be able to calculate the resultant field To derive the units of electric field strength To describe the motion of a charged particle in a uniform electric field To use the equations for electric potential and electric potential energy To use knowledge of electric potential to explain the graph for how it varies with distance To know how to compare negative and positive charges in terms of the variation in potential To use the equation for capacitance of an isolated sphere
Strategies Conditional Knowledge 'I know when to'	 5.1 – Thermal Physics To apply knowledge of density to explain the atomic or molecular spacing To know when to change the variables during the investigation for specific heat capacity To evaluate the results and make changes to improve accuracy of the SHC experiment. To know when to use latent heat of fusion and latent heat of vaporisation To interpret data from the experiments for latent heat To use the kinetic theory to obtain the equation for pressure To evaluate the experiment for Boyles law and to draw conclusions based on this. To apply proportionate relationships of pressure, volume and temperature to draw conclusions 5.2 – circular motion To apply knowledge of circular motion and centripetal force to situations such as conical pendulum and a whirling bung To evaluate the method of a whirling bung to look at improvements to accuracy of readings. 	 6.1 – capacitors To apply knowledge of electricity theory to solve circuit problems involving capacitors To evaluate and draw conclusions based on both capacitors in series and parallel circuits To interpret charging and discharging graphs for capacitors To analyse capacitor graphs and use them to calculate initial values or the resistance of the circuit To interpret spreadsheet data to draw conclusions about capacitors 6.2 – electric fields To interpret unfamiliar situations and draw electric field diagrams from them To apply knowledge of mechanics and electricity to solve free body force diagrams for examples pendulums To evaluate facts and rationalise them into gravitational and electric fields To apply knowledge of electricity to answer questions about a cathode ray tube

			To inter potentia	pret and draw conclusions on the graph showing the variation of al with distance	
Key Questions	stions What is kinetic theory? What are the differences between states of matter? What		What are the rules of circuits for capacitors? How does a capacitor work?		
	happens to a gas when variables change? How and why do satellites move around the			How do charged particles move and work in electric fields?	
	earth?				
Assessment	End of thermal physics topic exam in November. Circular motion topic assessed in		End of capacitor exam in November. Electric field topic assessed in spring		
topics	spring term.		term		
Cross curricular	Maths – equations and graphs		Maths – graphical analysis of both capacitor and electric fields graphs,		
links/Character	Chemistry – moles and pressure, temp and volume relationship		rearranging of equations, resultant vectors		
Education	Geography – satellites		DT electronics – circuit analysis		