Curriculum Map: Physics year 12 spring

	Teacher 1	Teacher 2 3.3 – work energy and power	
Content	4.4 – waves		
Declarative	To define compression, rarefaction, wavelength, amplitude, frequency, time period,	To state the Joule definition	
knowledge	displacement, coherent, phase difference, path difference, progressive, transverse,	To know that work done equals energy transferred	
'l Know'	longitudinal, intensity, diffraction, refraction, reflection, polarisation, ionising,	To give the forms of energy and list examples	
	interference, total internal reflection, critical angle, constructive, destructive,	To recall the principle of conservation of energy	
	stationary wave, node, antinode, harmonic, fundamental frequency	To define power	
	To know the diagrams for diffraction, reflection and refraction	To know that efficiency is connected to wasted energy	
	To know the relationship between intensity and amplitude	To define efficiency	
	To know the components of the electromagnetic spectrum along with their	3.4 – materials	
	wavelength values	To define elastic, plastic, brittle, strong, hard, ductile, malleable	
	For each part of the spectrum – to list the dangers, uses and production of them	polymeric, limit of proportionality, elastic limit, deformation, youngs	
	To state which parts of the spectrum are ionising	modulus, tensile, stress, strain	
	To give the differences between UVA, UVB and UVC radiation	To know the force extension graphs for brittle, ductile and polymeric	
	To know the similarities of the electromagnetic spectrum	materials	
	To know the difference between polarised and unpolarised light	To define hooke's law	
	To quote Snell's law	To recall what the spring constant is and the units of it	
	To recall the principle of superposition	To know the set up of equipment to determine the youngs modulus	
	Give the difference between a double slit and a diffraction grating	3.5 – newtons laws of motion and momentum	
	To Know the diagrams showing the different harmonics of a stationary wave	To recall Newton's 3 laws of motion	
		To draw force diagrams	
		To define momentum, conservation of momentum and impulse	
		To define elastic and inelastic collisions	
Skills	4.4 – waves	3.3 – work energy and power	
Procedural	To know how to calculate the speed of a wave	To use the equation for work done	
Knowledge	To determine the frequency and amplitude of a wave using an oscilloscope	To use vector theory to calculate distance in relation to work done	
'I know how to'	To calculate the intensity of a wave	To calculate kinetic, gravitational, elastic and thermal energy	
	To describe how to measure the speed of a wave when it is undergoing diffraction	To describe energy transfers between forms	
	To explain how x rays are produced	To calculate power using energy and work done	
	To explain how a polasising filter works and what is happening to the light	To draw Sankey diagrams for a situation	
	To use Malus's law to calculate the intensity of light passing through the filters	To calculate efficiency	
	To describe observations when using more than one filter and rotating them		
	To use and apply snell's law	3.4 – materials	
	To relate refractive index to the level of refraction	To explain the difference between elastic and plastic and to label these	
	To use path difference and phase difference to explain how constructive or	points on a force extension graph	
	destructive interference occurs	To describe a force extension graph for a material	
	To use the principle of superposition to calculate the results wave when 2 waves meet	To use Hooke's law to calculate force or spring constant	
	To describe the requirements necessary for us to have constructive and destructive	Determine the spring constant experimentally using a graph of results	
	interference	To calculate work done from a force extension graph	
	To use the double slit equation	To describe the energy changes involved during plastic deformation	

	To draw conclusions on how the wavelength is affected by changing difference variables To describe and explain the fringe patters using knowledge of path and phase difference again. To use the diffraction grating equation and apply it to questions To experimentally determine the wavelength of light using diffraction grating To take measurements of fringe spacing and compare results of wavelength To explain how a stationary wave if formed Describe how you get different stationary waves To use knowledge of nodes and antinodes to explain what is happening to the energy of the wave. To describe and conduct an experiment to measure the speed of sound in an open ended tube To describe an experiment to measure the speed of a wave on a string Use harmonic diagrams to calculate the wavelength of the wave To explain the difference in production of stationary waves between an open and a closed tube To label a diagram of a stationary wave with nodes and antinodes	To calculate Youngs modulus using both equations To know how to experimentally determine the Youngs modulus of a wire To know how to calculate the errors associated with the Young's modulus Calculate Youngs modulus from a stress strain graph To label force extension graphs for brittle, ductile and polymeric materials with any key labels (elastic limit for example) To relate the properties of materials to their graphs 3.5 – newtons laws of motion and momentum To use Newton's 2 nd law to calculate force or acceleration To apply Newton's 3 rd law to explain the forces acting on an object and to draw free body diagrams of the situation To calculate momentum To apply conservation of momentum to different scenarios To calculate impulse using equation and also a force time graph. To use knowledge of momentum and energy transfers to solve both elastic and inelastic collisions
Strategies Conditional Knowledge 'I know when to'	 4.4 - waves To know when to discuss total internal reflection or refraction To evaluate the results collected from the oscilloscope practical and to identify any improvements Apply knowledge of interference to explain how sound can sometimes have high and low amplitudes. To interpret the double slit equation to use proportionalities to describe relationships To analyse experimental length data to decide on levels of uncertainty in measurements when using diffraction gratings. Analyse diagrams of a stationary wave to draw conclusions on its wavelength and production To evaluate experimental method for determining speed of sound and discuss how some of the errors could be overcome	 3.3 – work energy and power To interpret energy calculations and transfers to solve for another variable To know when to use each energy equation to solve a problem To compare efficiencies and draw conclusions on their energy consumption 3.4 – materials To evaluate the accuracy of measurements in Youngs modulus practical and to suggest reasons behind the uncertainty Critically analyse value for Youngs modulus and compare to a true value 3.5 – newtons laws of motion and momentum To interpret questions and apply knowledge of momentum to solve for different variables To relate impulse to newton's 2nd law and to derive it from first principles To interpret force time graphs to calculate the impulse To know when to use theory of elastic and theory of inelastic collisions in problems.
Key Questions	How are waves formed? How are waves used?	What happens when materials are stretched? What happens during collisions?
Assessment topics	End of unit 4.4 exam at Easter	End of 3.4 exam and whole of module 3 mock

Cross curricular links/Character Education	Music – stationary waves and harmonics			Maths – projectile motion, kinematic equations, graphs, trigonometric functions DT - material properties	