Year 12	
Autumn Term	Module 1: Practical Skills in Chemistry Module 2: Foundations in Chemistry
Spring Term	Module 3 part 1: Development of the Periodic Table, its contents and how to use it to make predictions. Module 4 part 1: Basic Organic Chemistry concepts and Hydrocarbons;
	Module 3 part 2: Energy changes and Rates of reactions, how to measure and influence them Module 4 part 2: Alcohols, Haloalkanes and Analysis
Summer Term	Topic revision, preparation for exams Introduction to Modules 5 and 6
Year 13	
Autumn Term	Module 5 part 1: Rates, Equilibrium and pH Module 6 part 1: Aromatic compounds, Carbonyls, Acids and Acid derivatives.
Spring Term	Module 5 part 2: Energy; part 3: Transition metals and Qualitative analysis of ions Module 6 part 2: Nitrogen compounds, Polymers and Synthesis; part 3: Analysis
Summer Term	Revision, exam focused study
Throughout	Practical Skills

	Autumn 1 (Module 1) Throughout both years (PAGs)		
Content	Module 1 and PAGs		
Declarative	Outline of the practical skills that will be assessed in a written examination.		
knowledge	The skill acquisition and assessment is supported by Practical Assessment Group (PAG) practicals, which are assessed in a supportive, formative way		
'I know'	throughout the course to ensure that all students who wish to are able to achieve the practical endorsement for the qualification.		
	I know:		
	The appropriate apparatus needed to record a range of measurements (eg mass, time, volume of liquids and gases, temperature)		
Skills	I know how to:		
Procedural			
Knowledge	Apply investigative approaches and methods to practical work		
'I know how to'	Safely and correctly use a range of materials including corrosive, irritant, flammable and toxic substances		
	Follow written practical instructions		
	Make and record observations/measurements		
	Keep appropriate records of experimental activities		
	Present data in a scientific way		
	Use appropriate software / devices to process data, carry out research and report findings		
	Use online and offline research sources including websites, textbooks and other printed scientific sources of information		
	Safely set up and use apparatus for measuring variables (including pH), for heating liquids (including flammable liquids), for titration, for distillation and refluxing,		
	for filtration (including under reduced pressure)		
	Use a volumetric flask and make up a standard solution		
	Use acid-base indicators in titrations		
	Purify a solid by recrystallisation		
	Purify a liquid, including using a separating funnel		
	Use melting point apparatus		
	Use thin layer or paper chromatography		
	Set up electrochemical cells and measure voltages		
	Measure rates of reaction by initial rate method (eg clock reaction) and by a continuous monitoring method		
	Plan a valid investigative experiment		
	Evaluate results and draw conclusions		
	Assess the validity of a set of data, given the variables controlled		
Strategies	I know when to:		
Conditional			
Knowledge	Cite sources of information in support of factual data presented		
'I know when to'			
Key Questions	How can this correlation be investigated practically to obtain data and determine whether there is a causal link?		
	How can a chemical be synthesised and purified? How can its purity be determined?		

Assessment	Tested in every written assessment	Assessed for individual key skills acquired in PAG practicals
topics		
Cross curricular	Citizenship: Critical assessment of media information: the scientific method	
links/Character		
Education		

Curriculum Map: CHEMISTRY Year 12 Module 2: Foundations in Chemistry

	Autumn 1 Autumn 2			
Content	Module 2:			
Declarative	A bridge from GCSE to A level, covering the basic chemical concepts and developing maths skills and practical techniques skills			
knowledge				
'I know'	I know:			
	The definitions of the following terms, with their units where appropriate (symbol 'mol', in terms of carbon-12 or in terms of 6.02 x 10^{23} elementary	relative atomic mass, isotopes, relative isotopic mass, amount of substance, mole entities), Avogadro constant (N_A), molar mass, molar gas volume		
	The different models for atomic structure and how these have changed ov	er time		
	The names and formulae for nitrate, carbonate, sulfate, hydroxide, ammo The formulae of common acids (HCl H ₂ SO ₄ HNO ₃ CH ₃ COOH) and common	alkalis (NaOH KOH NH3)		
	That in aqueous solution, acids release H^+ ions and alkalis release OH^- ions That neutralisation is the reaction of (i) H^+ and OH^- to form H_2O (ii) acids a			
	The ideal gas equation: pV=nRT (and the SI units used)			
	The techniques and procedures needed during experiments, involving the	measurement of mass, volumes of solutions and gas volumes		
	The rules for assigning and calculating oxidation number for species in ele			
	That the oxidation number for O in peroxides and H in metal hydrides is -1			
	That oxidation is loss of electron(s) and reduction is gain of electron(s)			
	The number of electrons that fill the first four shells			
	The definitions of the following terms: atomic orbital, ionic bonding, coval	ent bonding, electronegativity, hydrogen bonding		
	The shapes of s- and p-orbitals, the number of orbitals in s-, p- and d- sub-	shells and the number of electrons that fill the s-, p- and d- sub shells		
	That the 'average bond enthalpy' is a measure of covalent bond strength			
	The shapes of, and bond angles in, molecules and ions with up to 6 electro The shapes: linear, non-linear, trigonal planar, pyramidal, tetrahedral, octa	n pairs around central atom and that lone pairs repel more than bonded pairs ahedral		
	That permanent dipole- dipole interactions and induced dipole – dipole in	teractions and both referred to as Van der Waals' forces		
	That induced dipole-dipole interactions can be referred to as London (disp	•		
	That hydrogen bonding is intermolecular bonding between molecules containing N, O or F and the H atom of -NH -OH or HF			

Skills	I know how to:				
Procedural					
Knowledge	Use the following terms correctly in explanations: relative atomic mass, isotopes, relative isotopic mass, relative formula mass, relative molecular mass (Mr),				
'I know how to'	amount of substance, mole (symbol 'mol', in terms of carbon-12 or in terms of 6.02×10^{23} elementary entities), Avogadro constant (N _A), molar mass, molar gas				
	volume, empirical formula, molecular formula, anhydrous, hydrated, water of crystallisation				
	Derive the atomic structure of atoms and ions in terms of protons, neutrons and electrons (given atomic number, mass number and any ionic charge)				
	Use models of atomic structure to explain atomic property trends				
	Use mass spectrometry data to determine: relative isotopic masses, relative abundance of an isotope				
	Predict ionic charge from position of element on periodic table				
	Construct balanced chemical equations including state symbols, including for neutralisation reactions (incl. ionic equations) and redox reactions of metals with				
	acids to form salt and hydrogen				
	Use stoichiometric relationships in calculations				
	Calculate the relative atomic mass of an element from relative abundances of its isotopes				
	Calculate relative formula mass, relative molecular mass (Mr) from atomic masses				
	Calculate empirical and molecular formulae from composition by mass (incl. elemental analysis data) or percentage compositions by mass and relative molecular				
	mass				
	Calculate the formula of a hydrated salt from percentage composition, mass composition or from experimental data				
	Calculate amount of substance from mass, solution volume and concentration or gas volume (latter using the ideal gas equation to process data as required)				
	Calculate percentage yield of a reaction, or related quantities from percentage yield				
	Calculate atom economy of a reaction				
	Calculate concentration of a solution (or other related values) from titration data, or raw experimental results				
	Explain the concept of strong and weak acids in terms of relative dissociations				
	Perform an acid-base titration, including preparation of a standard solution of required concentration				
	Use a Roman numeral to indicate the magnitude of the oxidation number of an element where several options exist				
	Write formulae from names which include a Roman numeral and vice versa				
	Identify whether oxidation or reduction has taken place from electron movement or changes in oxidation number				
	Interpret metal and acid redox equations, incl unfamiliar redox reactions, and make predictions of products in terms of oxidation numbers and electron loss/gain				
	······································				
	Use 'electrons in a box' representation and sub-shell notation (eg 1s ² 2s ² 2p ⁴)				
	Show the filling of orbitals in the first three shells and the 4s and 4p orbitals in order of increasing energy, including filling orbitals at the same energy singly before				
	pairing				
	Deduce the electron configuration of atoms and ions (when given the charge) up to atomic number (Z) =36, ions being limited to s- and p- blocks				
	Construct 'dot-and-cross' diagrams for ionically bonded compounds, and for single and multiple covalent bonded substances and incl dative (coordinate) bonding				
	Explain the existence of solid structures of giant ionic lattices				
	Explain the effect of structure and bonding on physical properties of ionic substances				
•					

	Use electron pair repulsion theory to predict/explain molecular shapes and angles Use ideas about electronegativity to predict chemical bond type and explain polar bond and permanent dipole in molecules containing covalently bonded atoms Explain that a polar molecule needs polar bonds with dipoles that don't cancel out Explain intermolecular bonding/ forces in terms of permanent diploe-dipole interactions or induced dipole – dipole interactions Draw diagrams of hydrogen bonding and use ideas of this to explain macroscopic properties (eg density of ice vs water, relatively high mpt and bpt of water) Explain solid structures of simpler molecular lattices as covalent molecules attracted by intermolecular forces (eg water, l ₂) Explain effect of structure and bonding on the physical properties of covalent compounds with simple molecular lattice structures (incl mpt, bpt solubility and conductivity)
Strategies Conditional Knowledge 'I know when to'	I know when to: Use specific techniques to produce volume or mass data for calculations of formula mass and related quantities Explain properties in terms of covalent intramolecular bonds and when to explain in terms of intermolecular bonds (and which type of intermolecular bonds)
Key Questions	What is matter made from and how do substances react? What models can we use to help us make sense of observations and how have these models developed over time?
Assessment topics	Tested at the end of 2.1, 2.2 and end of Module 2 before end of term 1. Repeat testing in second half of term 2
Cross curricular links/Character Education	Maths skills in problem solving Understanding and explaining observations in qualitative and quantitative terms Using models to develop understanding and to make predictions Understanding of the scientific approach to problem solving and investigations

Curriculum Map: CHEMISTRY Year 12 Module 3: The Periodic Table and Energy

	Spring 1	Spring 2		
Content	Module 3:			
Declarative	Development of the Periodic Table, its contents and how to use it to make predictions.			
knowledge 'I know'	Energy changes and rates of reactions, how to measure and influence	e them		
	I know:			
	Periodicity			
	That the periodic table is an arrangement of elements in order of incre	-		
	That periods show repeating trends of physical and chemical propertie	es (periodicity)		
	That groups have similar chemical properties			
	The electronic configuration changes across Periods 2 and 3 The electronic federates into a manual distribution			
	The classification of elements into s-, p- and d-blocks			
	Definitions for: first ionisation energy Potential applications and benefits of graphene			
	Potential applications and benefits of graphene			
	Group 2			
	The outer shell s ² electron configuration and loss of 2 outer electrons	n redox reactions to form 2+ ions		
	The relative reactivities down the group Mg to Ba, shown by reactions with oxygen, water and dilute acids			
	The trend in reactivity in terms of first and second ionisation energies	down the group		
	The action of water on Group 2 oxides and the approx. pH of any resul	ting solutions, including the trend of increasing alkalinity		
	Some uses of Group 2 compounds as bases, including Ca(OH) ₂ in agric	ulture to neutralise acid soils and Mg(OH) $_2$ and CaCO $_3$ as 'antiacids'		
	Group 7 The Halogens			
	That the halogens exist as diatomic molecules			
	The outer shell s ² p ⁵ electron configuration and gain of 1 outer electron			
	The trend in reactivity down the group as shown by reaction with othe			
	water as in water treatment (ii) reaction of chlorine with cold dilute ac	f the same element. Examples of this (including equations) for (i)reaction of chlorine with queous solution of NaOH as used to form bleach and (iii) similar reactions to (i) and (ii) (toxic chlorine gas and possible carcinogenic risk from formation of chlorinated n ethical issue including consideration of the 'right to choose'		
		anions with aqueous silver ions, followed by aqueous ammonia and their use as a test for		
	Qualitative Analysis			
	The tests for the ions: carbonate, sulfate and halide (including order, a The test for the ammonium ions: by reaction with warm NaOH(aq) for	-		
	Enthalpy Changes			
	That some chemical reactions are exothermic (ΔH negative) and some	are endothermic (ΛH nositive)		
	mat some chemical reactions are exothermic (Drinegative) and some			

	Definitions: activation energy, standard conditions, standard states, enthalpy change of reaction ($\Delta_r H$), enthalpy change of formation ($\Delta_f H$), enthalpy change of
	Combustion (ΔcH), enthalpy change of neutralisation ($\Delta neutH$), average bond enthalpy
	That actual bond enthalpy may differ from the average value
	That exothermic reactions are associated with overall making of bonds and endothermic are associated with overall breaking of bonds
	Reaction Rates
	The effect on rate of concentration (incl gas pressure) and reason for this
	That a catalyst increases reaction rate without being used up and allows reaction to happen via a different route with lower activation energy
	The meaning of the terms 'homogeneous catalyst' and 'heterogenous catalyst'
	That catalysts are very important economically and for sustainable industrial reactions by lowering required temperatures and thus reducing energy demand,
	leading to reduction in fossil fuel combustion and CO ₂ emissions, but that some catalysts can be toxic
	Chemical Equilibrium
	That a dynamic equilibrium exists in a closed system when the rate of the forward reaction equals the rate of the reverse reaction
	That when dynamic equilibrium is achieved, the concentrations of reactants and products do not change
	That adding a catalyst will increase the rate of forward and backwards reactions by the same amount, resulting in an unchanged position of equilibrium
	The expression for K _c for homogeneous reactions
Skills	I know how to:
Procedural	
Knowledge	Periodicity
'I know how to'	Explain the trend in first ionisation energy across Periods 2 and 3 and down a group, in terms of attraction, nuclear change and atomic radius (including small
	decrease as a result of s- and p- shell energies and p-orbital repulsion)
	Predict the number of electrons in each shell of an atom from the successive ionisation energies and thus determine the element's group.
	Describe metallic bonding as a strong electrostatic attractive between positive ions and delocalised electrons
	Draw a labelled model for a giant metallic lattice structure
	Describe solid giant covalent lattices of carbon (diamond, graphite, graphene) and silicon as networks of atoms bonded by strong covalent bonds
	Use the models of giant metallic/covalent lattices to explain physical properties, including mpt, bpt, solubility and electrical conductivity (in terms of type of
	particle present, relative strength of bonds/forces and mobility of particles involved
	Explain the variation in mpts across Periods 2 and 3 in terms of structure and bonding (giant metallic/giant covalent/simple molecular)
	Group 2
	Correctly use the term 'second ionisation energy' and write an equation for the change
	Group 7 The Halogens
	Explain the trend in the bpts of the halogens in terms of induced dipole-dipole interactions (London forces)
	Write full and ionic equations for redox reactions
	Explain the trend in reactivity down the group, from decreasing ease of formation of the 1- ion, in terms of attraction, atomic radius and electron shielding
	Qualitative Analysis
	Design a series of tests to identify unknown ions in a solution

	Enthalpy Changes			
	Construct enthalpy profile diagrams showing the enthalpy change of reaction and activation energy Determine enthalpy changes directly from experimental results (including use of $q = mc\Delta T$)			
	Design and carry out experiments to obtain data.			
	Use average bond enthalpies in enthalpy calculations			
	Use Hess' Law to construct enthalpy cycles to determine an unknown enthalpy value from given data			
	Reaction Rates			
	Calculate reaction rate from graphs of how a physical quantity changes with time			
	Draw enthalpy profile diagrams to show the effect of a catalyst			
	Design and carry out experiments to obtain data, including measurement of mass, gas volumes and time			
	Draw a Boltzmann distribution curve and use this model to explain why reaction rate increases with catalyst and temperature			
	Chemical Equilibrium			
	Use le Chatelier's principle with homogeneous equilibria to deduce effect of changes in temperature, pressure or concentration			
	Investigate changes to equilibrium resulting from changes in concentration and temperature (eg by assessing colour changes)			
	Explain why there may be a compromise in industry between chemical equilibrium position and reaction rate in deciding optimum conditions			
	Calculate K _c from equilibrium concentration data			
	Estimate the position of equilibrium from the magnitude of K _c			
Strategies	I know when to:			
Conditional				
Knowledge	Enthalpy Changes			
'I know when to'	Use Hess' law to solve an enthalpy problem			
	Reaction Rates			
	Use simple collision theory and when to use the Boltzmann distribution to explain effect on reaction rate			
Key Questions	What does 'periodic' mean in the context of the Periodic Table and how can this be used to predict properties?			
-	How fast do chemical reactions happen and how can that speed be changed?			
	How can we model what is happening in exothermic and endothermic reactions?			
	Why do some reactions never go to completion and how can the yield in these reactions be increased?			
Assessment	Tested at the end of Topic 3.1 and at the end of Topic 3.2 and in every subsequent Physical/Inorganic test			
topics				
Cross curricular	Links:			
links/Character	Geography – environmental analysis			
Education	Ethics – decisions on chlorination of water			
	History – development of periodic table, facts and key individuals involved			

Curriculum Map: CHEMISTRY Year 12 Module 4: Core Organic Chemistry

	Spring 1	Spring 2				
Content	Module 4:					
Declarative	Basic concepts and Hydrocarbons; Alcohols, Haloalkanes and Analysis					
knowledge						
'I know'	l know:					
	The stems, suffix and prefixes for alkanes, alkenes, ketones, alcohols, a	dehydes, and carboxylic acids				
	The difference between aliphatic, alicyclic and aromatic					
	The different types of covalent bond fission					
	The bonds involved in alkanes					
	That the boiling point of alkanes increases with chain length					
	The different reactions of alkanes including combustion and radical sub	stitution				
	The bonds involved in alkenes					
	The different addition reactions of alkenes					
	The benefits for sustainability of waste polymers					
	The products of combustion					
	The products of oxidation of alcohols					
	The products of a dehydration reaction					
	The mechanism for nucleophilic substitution					
	The factors that affect reactivity of haloalkanes The sources of CFCs and the effect on the atmosphere					
	The basis of how infrared spectroscopy works					
Skills	I know how to:					
Procedural						
Knowledge	Use IUPAC rules to name organic compounds					
'I know how to'	Write structural, skeletal, displayed, general, empirical and molecular f	ormula				
	Determine structural and geometric isomers					
	Represent radicals and the movement of electron pairs					
	Represent the free radical substitution of alkanes					
	Determine the product of an addition reaction					
	Apply Markownikoffs rule to alkenes					
	Draw addition polymerisation					
	Identify a monomer from a section of addition polymer					
	Classify alcohols					
	Explain the properties of alcohols in terms of hydrogen bonding					
	Produce an ester					
	Name an ester based on the alcohol and carboxylic acid					
	Test the reactivity of haloalkanes using hydrolysis					
	Use Quickfit apparatus for organic synthesis					
	Use a separating funnel					

	Test for different functional groups Produce different products in multi-step reactions Use infrared spectra to identify compounds Use mass spectra to identify molecular ion peaks and fragmentation patterns			
Strategies Conditional Knowledge 'I know when to'	I know when to: Apply different stems, prefixes and suffixes to different organic compounds.			
Key Questions				
Assessment topics	Tested at the end of Topic 4.1 and at the end of Topic 4.2 and in every subsequent Organic test.			
Cross curricular links/Character Education	Geography – waste and climate change History – notable scientists and their contributions Food and design tech – esters			

Curriculum Map: CHEMISTRY Year 13 Module 5: Physical Chemistry and Transition Elements

	Autumn 1	Autumn 2	Spring 1	Spring 2
Content	Topic 5.1 Rates, Equilibrium and pH		Topic 5.2 Energy	Topic 5.3 Transition Metals and Qualitative Analysis of lons
Declarative				
knowledge 'I know'	l know:		l know:	I know:
IKNOW	Rates The definitions of: rate equation, overall order The shapes of concent orders 0, 1 and 2 The shapes of rate corr orders 0, 1 and 2 The Arrhenius equation Equilibrium The definitions of: horr heterogeneous, equili partial pressure The layout of a Kc and The effect of changing Kp PH The definitions of: Bro base, conjugate acid b dibasic, tribasic, pH, b The layout of a Ka exp The equation for pH The layout for a Kw exx The composition of a L The shapes of the neu curves for strong and the The appropriate use o neutralisation reaction	r, half-life cration time graphs for ncentration graphs for n mogeneous, bria, mole fraction, Kp expression conditions on Kc and insted Lowry acid and ase pairs, monobasic, uffer ression pression puffer tralisation / titration weak acids and bases f various indicators for	Lattice Enthalpy The definitions of: lattice enthalpy, first ionisation energy, enthalpy change of formation, enthalpy change of solution, enthalpy change of hydration Enthalpy and Entropy That entropy is a measure of the dispersal of energy in a system, which is greater the more disordered the system The Gibbs equation $\Delta G = \Delta H - T \Delta S$ That a process is feasible when ΔG is negative The limitations of prediction on feasibility, in terms of kinetics Redox and Electrode Potentials The definitions of: oxidising agent, reducing agent, standard electrode (redox) potential $E \oplus$ That a fuel cell uses the energy from reaction of a fuel with oxygen to create a voltage The changes that take place at each electrode in a fuel cell	Test for ions: The observation for positive tests for the following anions and cations: CO_{3}^{2-} , Cl^{-} , Br^{-} , I^{-} , SO_{4}^{2-} ; NH_{4}^{+} ; Cu^{2+} , Fe^{2+} , Fe^{3+} , Mn^{2+} , Cr^{3+} Transition Metals The electron configuration of atoms and ions of period 4: Sc- Zn The definition of Ti-Cu as transition elements (d-block element with at least one stable ion with an incomplete d- sub-shell) Examples of at least two transition elements which show: i) Existence of more than one oxidation state in compounds ii) Formation of coloured ions iii) Catalytic behaviour of element / its compound The importance of catalysts in industrial manufacture of chemicals The definition and correct usage of terms: ligand, coordinate (dative covalent) bonding, complex ion, coordination number, monodentate, bidentate The monodentate ligands: H ₂ O, Cl - and NH ₃ The bidentate ligand: NH ₂ CH ₂ CH ₂ NH ₂ ('en') A range of octahedral, tetrahedral and square planar complexes including: Octahedral hexaaqua complexes, e.g. $[Cu(H_2O)_6]^{2+}$, $[Fe(H_2O)_6]^{3+}$ Tetrahedral tetrachloro complexes, e.g. $CuCl_{4}^{2-}$ and $CoCl_{4}^{2-}$
				Square planar complexes of Pt, e.g. platin: $Pt(NH_3)_2Cl_2$

	The use of cis-platin as an anti-cancer drug and its action in binding to DNA preventing cell division Ligand substitution reactions and their colour changes, specifically (i) [Cu(NH ₃)(H ₂ O) ₂] ²⁺ and [CuC/ ₄] ²⁻ from [Cu(H ₂ O) ₆] ²⁺ and (ii) [Cr(NH ₃) ₆] ³⁺ from [Cr(H ₂ O) ₆] ³⁺ Reactions and their colour changes, specifically of aqueous Cu ²⁺ , Fe ²⁺ , Fe ³⁺ , Mn ²⁺ and Cr ³⁺ with aqueous sodium hydroxide and aqueous ammonia (i) precipitation reactions (ii) complex formation with excess aqueous sodium hydroxide and aqueous ammonia Redox reactions and colour changes for: (i) interconversions between Fe ²⁺ and Fe ³⁺ (ii) interconversions between Cr ³⁺ and Cr ₂ Or ²⁻ (iii) reduction of Cu ²⁺ to Cu ⁺ , disproportionation of Cu ⁺ to Cu ²⁺ and Cu

Skills	I know how to:	I know how to:	I know how to:
Procedural			
Knowledge	Rates	Lattice Enthalpy	Test for ions:
'I know how to'	Deduce the rate equation from experimental	Use lattice enthalpy as a measure of ionic bonding	Test for the following anions and cations:
	data	strength	CO _{3²⁻} , C <i>l</i> ⁻ , Br ⁻ , I ⁻ , SO _{4²⁻}
	Explain what a rate equation shows	Use the terms and symbols for lattice enthalpy,	NH4 ⁺ , Cu ²⁺ , Fe ²⁺ , Fe ³⁺ , Mn ²⁺ , Cr ³⁺
	Calculate the rate of reaction using	enthalpy change of formation, ionisation energy,	
	experimental data and graphs using tangents	enthalpy change of atomisation, electron affinity,	Transition Elements
	Calculate the value and units of a rate	enthalpy change of solution, enthalpy change of	Write and draw complex ions with monodentate and
	constant	hydration	bidentate ligands including unfamiliar ligands, specifically
	Find the half-life from a concentration time		with six-fold coordination with an octahedral shape and four-
	graph	Apply conservation of energy to determine enthalpy	fold coordination with either tetrahedral or square planar
	Use half-lives to calculate the rate constant	changes:	shape.
	Deduce the order of a reaction from the	i)Construct Born-Haber cycles to calculate unknown	Draw 3D diagrams to illustrate stereoisomerism, including
	shape of the graph	energy values	those with bidentate and multidentate ligands eg: cis-trans
	Determine the rate constant for a first order	ii)Use enthalpy change of solution and relevant energy	isomerism e.g. $Pt(NH_3)_2CI_2$ and optical isomerism e.g.
	reaction from the gradient	terms to construct enthalpy cycles and calculate	$[Ni(NH_2CH_2CH_2NH_2)_3]^{2+}$
	Suggest a mechanism for a multistep	unknown energy terms	Explain the biochemical importance of iron in haemoglobin,
	reaction using the rate equation	Fundation and Markinghathan affects of invite share an effect	including ligand substitution involving oxygen and carbon
	Plot an Arrhenius graph and use it to	Explain qualitatively the effect of ionic change and	monoxide
	determine the activation energy	radius on value of lattice enthalpy and enthalpy	
	Calculate the pH of a buffer solution Explain the control of blood pH by the	change of hydration	Interpret and predict unfamiliar reactions including ligand
	carbonic acid hydrogen carbonate buffer	Enthalpy and Entropy	substitution, precipitation and redox
	solution	Explain the difference in size of the entropy of (i)	
	Solution	solids, liquids and gases (ii) reactants and products in a	
	Equilibrium	reaction where there is a change in the number of	
	Write Kc and Kp expressions for equilibrium	gaseous molecules	
	reactions	Calculate the entropy change of a system, given	
	Determine the units for Kc and Kp	relevant data	
		Use temperature and changes in entropy and enthalpy	
	рН	to calculate the free energy change of a reaction,	
	Write Ka expressions for acid - base	predict reaction feasibility and determine	
	reactions	temperatures for feasibility	
	Identify an acid and its conjugate base		
	Use a Ka and Kw expressions to find the pH	Redox and Electrode Potentials	
	of strong and weak acids and strong bases	Construct redox equations using half-equations and	
	Select the appropriate indicator for a variety	oxidation numbers	
	of neutralisation experiments	Interpret and predict reactions involving electron	
		transfer	
		Carry out redox titrations including Fe ²⁺ /MnO ₄ and	
		$I_2/S_2O_3^{2-}$	

		Complete structured and non-structured titration calculations, including non-familiar redox systems Carry out measurements of cell potentials of metals and non-metals in contact with their ions in aqueous solution and of ions of the same element in different oxidation states in contact with a platinum electrode. Calculate the standard cell potential by combining two E^{\ominus} values Apply electrode potential principles to modern storage cells	
Strategies Conditional	I know when to:	I know when to:	
Knowledge 'I know when to'	RatesCalculate the gradient to find the rate of reactionUse the shape of a graph to infer the order of the reactionUse the Arrhenius equation to find an unknownEquilibrium Use Kp, and Kc expressions to solve complex problems.pH	Lattice EnthalpyUse an enthalpy cycle to obtain an unknown enthalpy value that may not be accessible via experimental measurementEnthalpy and Entropy Convert units prior to use in free energy calculationsRedox and Electrode Potentials Use a combination of equations and standard electrode potentials to determine whether a reaction is feasible and know when this cannot be used due to limitations of such predictions	
	Use Kp, and Kc expressions to solve complex problems. Use practical skills to determine unknown concentrations of acids and bases.		
Key Questions	How do you measure reaction speeds and influence them? How do equilibrium reactions work, and how can they be manipulated to obtain best yields in reactions? How are equilibrium reactions critical to living organisms?	How can we use a model of bonding to determine energy changes that cannot be experimentally measured? How can we predict the feasibility of chemical change? How is a redox titration used ? How do batteries and fuel cells work?	Why are the compounds of transition elements coloured? How can transition element ions and compounds be identified? Why are many transition elements able to be used as catalysts?
Assessment topics	End of topic test	End of topic test	End of topic test
Cross curricular links/Character Education	Links: Biology - buffers Maths – rearranging equations, logs, problem solving	Links: Engineering - energy storage Maths – rearranging equations, problem solving	Links: Biology – importance of iron in blood and ligand substitution problem of CO, cancer treatment Maths: spatial visualisation, symmetry

Curriculum Map: CHEMISTRY Year 13 Module 6: Organic Chemistry and Analysis

	Autumn 1	Autumn 2	Spring 1	Spring 2
Content	Topic 6.1 Aromatic Compound	s, Carbonyls, Acids and	Topic 6.2 Nitrogen Compounds, Polymers and	Topic 6.3 Analysis
Declarative	Acid Derivatives.		Synthesis	
knowledge				
'l know'	I know:		I know:	l know:
	Aromatic Compounds		Amines	Chromatography and qualitative analysis
	The definitions of: benzene, mo	adel substitution	The definitions of: amine, alkyl ammonium salt,	The definitions of: R_f value, retention time, TLC,
	reaction, benzene derivative, e		(Lewis base), Bronsted-Lowry base, dative bond	GC-MS, stationary phase, mobile phase,
	substitution, Friedel-Crafts read	•	(Lewis base), bronsted Lowry base, dative bond	qualitative analysis
	group, delocalised		Amino acids, Amides and Chirality	The conditions required to run TLC and GC
	The Kekulé model of benzene,	structure of phenol,	The definitions of: amino acid, zwitterion, isoelectric	What information can be derived from these
	electrophilic substitutions mec	hanism, carbon -carbon	point, amide, optical isomers, chiral molecules,	analyses
	bond lengths in benzene, hydro	ogenation data for	polarised light, enantiomers, stereoisomerism,	
	benzene		racemate/racemic mixture	Spectroscopy
			The general formula for an amino acid	The definitions of: TMS, chemical shift,
	Carbonyl compounds			deuterium, NMR, equivalent protons
	The definitions of: nucleophile, addition	oxidation, nucleophilic	Delvestere end Delversides	The spin-spin coupling = $n+1$ rule
	What a carbonyl group is and h	ow to identify it the	Polyesters and Polyamides The definitions of: repeat unit, condensation	The meaning of singlet, doublet, triplet, quartet, multiplet
	nucleophilic addition mechanis	• •	polymerisation, polyester, polyamide	What information can be derived from IR, MS
	reducing agent NaBH ₄ , oxidisin	• •	polymensulon, polyester, polyannae	and nmr analyses
	carbonyls, the alcohol products	-	Carbon-Carbon bond formation	
	aldehydes and ketones		The definitions of: nitrile, cyanide	
			The nomenclature for nitriles	
	Carboxylic acids and esters		The nucleophilic substitution and addition	
	The definitions of: carboxylic ad		mechanisms of nitriles and cyanide groups	
	hydrolysis, esterification, acyl c		The reduction and hydrolysis conditions for nitriles.	
	The structure of a carboxylic ac	tids, esters and acyl	Ourse wis sound has is	
	chlorides The chemical reactions of carbo	ovulia acida	Organic synthesis The definitions of: distillation, reflux,	
	The physical properties of carb	-	recrystallisation, synthetic route	
	The reagents required to make	•	Lab equipment required for distillation, reflux,	
			filtration under pressure, melting point	
			determinations, safe heating of a flammable	
			substance	

Skills	I know how to:	I know how to:	I know how to:
Procedural			
Knowledge	Aromatic Compounds	Amines	Chromatography and qualitative analysis
'I know how to'	Explain how the Kekulé model evolved into the	Explain the basicity of amines	How to calculate R _f values
	current delocalised model	Prepare primary amines by substitution or reduction	Explain the positions of components on a TLC
	Name aromatic compounds using IUPAC rules.	Name amines	plate
	Draw mechanisms for halogenation and nitration of	Name the salts of amines (which are dependent	Explain the retention times of components in a
	arenes, taking into consideration 2-/4- or 3- directing	upon the acid used to make them)	GC trace
	effects	Predict the main product during amine preparation	
	Explain the relative resistance to bromination of	from halogenoalkane substitution reactions	Spectroscopy
	benzene compared with alkenes	Draw the 3D structure of an amine	Interpret ¹ H and ¹³ C nmr
	Explain why a halogen carrier is required in some	Write balanced equations for the formation of	Predict ¹ H and ¹³ C nmr for a given molecules
	reactions	primary amines from halogenoalkanes	Identify OH and NH groups in nmr traces using
	Identify the reactions of phenol		proton exchange with D ₂ O
	Explain the reactions of phenol	Amino acids, Amides and Chirality	
		Identify chiral centres and draw 3D enantiomers in a	
	Carbonyl compounds	mirror plane	
	Draw a reduction mechanism for aldehydes and	Predict the reactivity of an amino acid in different	
	ketones	reaction conditions	
	Predict the organic products for nucleophilic addition	Explain how a zwitterion is formed	
	reactions of aldehydes and ketones	Draw amino acids	
	Design chemical tests to prove the presence of	Draw and name amides	
	aldehyde or a ketone functional group		
	Carda and in a side and a stars	Polyesters and Polyamides	
	Carboxylic acids and esters	Draw a monomer, repeat unit, polymer chain	
	How to name carboxylic acids, esters and acyl	Identify a polyester link	
	chlorides	Identify a polyamide link	
	Explain the water solubility of carboxylic acids using	Prepare polyesters and polyamides	
	the concept of hydrogen bonding	Hydrolyse polyesters and polyamides	
	State and explain the various reaction conditions for	Predict the rates of polyester and polyamide	
	esterification and hydrolysis and predict the products	hydrolysis in different conditions	
	Prepare an acyl chloride using SOCl ₂ State and explain the use of acyl chlorides in the	Carbon-Carbon bond formation	
	preparation of esters, carboxylic acids, primary and	Identify if the CN will be a nitrile or cyanide group.	
	secondary amides	Draw the nitrile group and name compounds	
		containing it	
		Explain how racemic mixtures can be made during	
		nucleophilic addition reactions of carbonyls with	
		cyanide	
		Explain the reduction conditions of nitrile groups	

		Organic synthesis Design a synthetic route Safely use the lab equipment to perform distillation, reflux, filtration under pressure, melting point determination	
Strategies Conditional	I know when to:	I know when to:	l know when to:
Conditional Knowledge 'I know when to'	 Aromatic Compounds Use and interpret experimental evidence to describe the structure of benzene Interpret electrophilic substitution reactions of aromatic compounds and predict mechanisms Select reaction conditions depending on the reagents and the desired product Include a halogen carrier in acylation and alkylation reaction conditions and when it is not needed Carbonyl compounds Use chemical tests to identify the presence of aldehyde and ketone functional groups Carboxylic acids and esters Use the 'alcohol method' for esterification and when an acyl chloride method is required 	 Amines Select reduction to form amines and when to select substitution Amino acids, Amides and Chirality Stop looking for further enantiomers of a molecule Evaluate the issues surrounding the optical isomers and their uses in pharmaceuticals Polyesters and Polyamides Evaluate the environmental impact of polyester and polyamide hydrolysis Carbon-Carbon bond formation Select the nucleophilic substitution and when to choose the addition mechanism with CN containing groups. Organic synthesis Consider the merits of an alternative synthesis method to the one that you have 	Chromatography and qualitative analysis Use different qualitative tests to identify different organic functional groups. Spectroscopy Use elemental analysis, mass spectra, IR and NMR to deduce structure of organic compounds and what information each technique can supply
Key Questions	Can you explain, using a variety of evidence, why the model of benzene has changed over time? Can you draw, name and identify a range of organic molecules with different functional groups?	Can you draw, name and identify a range of organic molecules with different functional groups? Can you evaluate the environmental impact of using addition and condensation polymers? Can you plan a series of reactions in an organic synthesis to make a desired product?	Can you use multiple analysis sources to identify the structure of a given compound?

Assessment topics	6.1 End of topic test6.1 is also assessed in the Spring term PPE	6.2 and 6.3 Combined end of topic test	6.2 and 6.3 Combined end of topic test
Cross curricular links/Character Education	Links: A Level Biology: amino acids and polymers Basic Maths skills – substituting numbers into formulae to calculate quantities, ratios, Interpreting graphical data	Links: Maths – 3D structures	Links: Maths – 3D structures, problem solving