
Curriculum Map: Computing, Year 12

 Autumn Spring Summer

Content
Declarative
knowledge
‘I Know’

1.1.1 Structure and function of the processor
1.2.1 Operating Systems - 1
1.1.2 Types of processors
1.2.3 Introduction to programming
1.4.1 Data Types
2.2.1 Programming techniques
1.4.2 Data Structures

1.1.3 Input, output and storage
1.4.2 Data Structures
2.2.1 Programming techniques (b) Recursion
(Year 13 topic)
2.3.1 Algorithms
2.2.2 Software Development
**NEA – preparation starts
1.4.1 Data Types
1.2.1 Operating Systems- 2
2.1.1 Thinking abstractly
2.1.2 Thinking ahead
2.1.3 Thinking procedurally

**NEA – Analysis phase
1.2.2 Applications generation
1.3.1 Databases
2.1.4 Thinking logically
1.4.3 Boolean Algebra
1.3.2 Networks
1.3.3 Web Technologies
1.5.1 Computing related legislation
1.5.2 Ethical, moral and cultural
**NEA- more prep
1.2.4 Types of Programming Language – OOP (Y13 topic)

** Software design using UML (extra to spec)

Skills
Procedural
Knowledge
‘I know how to’

1.1.1 Structure and function of the processor (a) The
Arithmetic and Logic Unit; ALU, Control Unit
and Registers (Program Counter; PC, Accumulator.
ACC, Memory Address Register; MAR, Memory Data
Register; MDR, Current Instruction Register; CIR).
Buses: data, address and control: how this relates to
assembly language programs.
(b) The fetch-decode-execute cycle, including its effect on
registers.
(c) The factors affecting the performance of the CPU, clock
speed, number of cores, cache.
(d) Von Neumann, Harvard and contemporary
processor architecture.
1.2.1 Operating Systems (a) The need for, function and
purpose of operating systems.
(b) Memory Management (paging, segmentation and
virtual memory).
(c) Interrupts, the role of interrupts and Interrupt
Service Routines (ISR), role within the
Fetch‑Decode‑Execute Cycle.
(d) Scheduling: round robin, first come first served,
multi-level feedback queues, shortest job first and
shortest remaining time.
(h) Virtual machines, any instance where software is
used to take on the function of a machine including
executing intermediate code or running an
operating system within another.
1.1.2 Types of processors
(a) The differences between and uses of CISC and RISC
processors.

1.1.3 Input, output and storage (a) How different input,
output and storage devices can
be applied to the solution of different problems.
(b) The uses of magnetic, flash and optical storage
devices.
(c) RAM and ROM.
(d) Virtual storage.
1.4.2 Data Structures (b) The properties of stacks and
queues.
2.2.1 Programming techniques
(b) Recursion, how it can be used and compares to an
iterative approach (Year 13 topic)
2.3.1 Algorithms (a) Analysis and design of algorithms
for a given situation.
(b) Standard algorithms (bubble sort, insertion sort,
binary search and linear search).
(c) Implement bubble sort, insertion sort.
(d) Implement binary and linear search.
(e) Representing, adding data to and removing data
from queues and stacks.
(f) Compare the suitability of different algorithms for a
given task and data set
2.2.2 Software Development (a) Understand the
waterfall lifecycle, agile methodologies, extreme
programming, the spiral model and rapid application
development.
(b) The relative merits and drawbacks of different
methodologies and when they might be used.
(c) Writing and following algorithms.

** NEA- Analysis phase

• Finish Problem definition

• Establish stakeholders

• Finish research and investigation

• Conduct fact finding

• Prototype
1.2.2 Applications generation (a) The nature of
applications, justifying suitable applications for a specific
purpose.
 (b) Utilities.
 (c) Open-source vs closed source.
(d) Translators: Interpreters, compilers and assemblers.
1.3.1 Databases (a) Relational database, flat file, primary
key, foreign key, secondary key, entity relationship
modelling.
(b) Methods of capturing, selecting, managing and
exchanging data.
2.1.4 Thinking logically (a) Identify the points in a solution
where a decision has to be taken.
(b) Determine the logical conditions that affect the
outcome of a decision.
(c) Determine how decisions affect flow through a program.
1.4.3 Boolean Algebra (a) Define problems using Boolean
logic.
(b) Manipulate Boolean expressions, including the use of
Karnaugh maps to simplify Boolean expressions.
(c) Use logic gate diagrams and truth tables.
1.3.2 Networks (a) Characteristics of networks and the
importance of protocols and standards.

(b) Multicore and Parallel systems.
1.2.3 Introduction to programming (a) Procedural
programming language techniques:
•• program flow
•• variables and constants
•• procedures and functions
•• arithmetic, Boolean and assignment
operators
•• string handling
•• file handling.
 •• Assembly language (including following and writing
simple programs with Little Man Computer).
1.4.1 Data Types (a) Primitive data types, integer,
real/floating point, character, string and Boolean.
2.2.1 Programming techniques (a) Programming
constructs: sequence, iteration,
branching.
(b) Global and local variables.
(c) Modularity, functions and procedures, parameter
passing by value and reference.
(d) Use of an IDE to develop/debug a program.
1.4.2 Data Structures (a) Arrays (of up to 3 dimensions),
records, lists, tuples.

(d) Different test strategies, including black and white
box testing and alpha and beta testing.
(e) Test programs that solve problems using suitable
test data and end user feedback, justify a test strategy
for a given situation.
**NEA – preparation starts

• Submit proposal

• Define requirements

• Research and investigation
1.4.1 Data Types
(b) Represent positive integers in binary.
(c) Use of sign and magnitude and two’s complement to
represent negative numbers in binary.
(d) Addition and subtraction of binary integers.
(e) Represent positive integers in hexadecimal.
(f) Convert positive integers between binary
hexadecimal and denary.
(g) Positive and negative real numbers using
normalised floating point representation.
(h) How character sets (ASCII and UNICODE) are used to
represent text.
1.2.1 (e) Distributed, embedded, multi-tasking, multi-
user and real time operating systems.
(f) BIOS.
(g) Device drivers.
2.1.1 Thinking abstractly (a) The nature of abstraction.
(b) The need for abstraction.
(c) The differences between an abstraction and reality.
(d) Devise an abstract model for a variety of situations.
2.1.2 Thinking ahead (a) Identify the inputs and outputs
for a given situation.
(b) Determine the preconditions for devising a solution
to a problem.
(c) The need for reusable program components.
2.1.3 Thinking procedurally (a) Identify the
components of a problem.
(b) Identify the components of a solution to a problem.
(c) Determine the order of the steps needed to solve a
problem.
(d) Identify sub-procedures necessary to solve a
problem.

(b) Internet structure:
•• The TCP/IP stack.
•• DNS.
•• Protocol layering.
•• LANs and WANs.
•• Packet and circuit switching.
(c) Client-server and peer to peer

1.3.3 Web Technologies (a) HTML, CSS and JavaScript. See
AS appendix 5d.
(b) Lossy v lossless compression.
1.5.1 Computing related legislation (a) The Data Protection
Act 1998.
(b) The Computer Misuse Act 1990.
(c) The Copyright Design and Patents Act 1988.
(d) The Regulation of Investigatory Powers Act 2000.
1.5.2 Ethical, moral and cultural issues (a) The individual
moral, social, ethical and cultural
opportunities and risks of digital technology:
•• Computers in the workforce.
•• Automated decision making.
•• Artificial intelligence.
•• Environmental effects.
•• Censorship and the Internet.
•• Monitor behaviour.
•• Analyse personal information.
•• Piracy and offensive communications.
•• Layout, colour paradigms and character sets.
**NEA- more prep
1.2.4 Types of Programming Language

(e) Object-oriented languages (Y13 topic)

• Software design using UML (extra to spec)

Strategies
Conditional
Knowledge
‘I know when to’

Which kind of devices would use Von Neumann
architecture and which ones would use Harvard
architecture?
Which kind of devices would use RISC architecture and
which ones would use CISC?

When to use stacks and when to use queues in program
design?
What are the scenarios where the different sorting and
searching algorithms are applicable/suitable?

How Karnaugh maps are used to simplify Boolean
expressions.
Recommend client server or peer to peer architecture for
given networking scenario.

What are the design implications of using global variables?
When to use static data structures as opposed to dynamic
data structures?
Deciding when to use casting to convert from one data type
to another.

Be able to recommend / compare different
methodologies for a given software problem.
Be able to recommend / compare different types of OS
for a given scenarios.

Able to consider the legal /moral/environmental
implications of a new / existing computer system and/or the
use of electronic devices.

Key Questions What is the purpose and function of the core components
of a processor?
What is the role and components of the ALU?
What is the purpose and function of registers within the
processor, including the PC, accumulator, MAR, MDR and
CIR?
What is the purpose, function and role of the data, address,
and control buses in the processor?
How assembly language makes use of registers, and how
data and addresses are transferred between registers?
What is the purpose and stages within the FDE cycle?
How and when are the registers used within this cycle, and
how and where are data and addresses transmitted
to/from in each part of this cycle.
How the performance of the CPU can be affected by many
factors.
How and why the performance is affected by the clock
speed, the number of cores and the size, speed and cache.

What are the different approaches that the architectures
take to storing instructions and data in memory and the
benefits of each approach?

How to control the flow of a program (sequence, iteration
and selection).

What is the purpose and function of both variables and
constants?

How to read, trace and write code that makes use of both
variables and constants.

What are the benefits of using constants over variables?

What is the role of sub-programs (procedures and
functions) in a program, how these can be used to reduce
the amount of code and improved the efficiency?

What are the differences between procedures and
functions?

How to read, write and trace programs using both
procedures and functions.

What is the range of input, output and storage devices?
Candidates do not need to understand how the input
and output devices work but must be able to
recommend appropriate devices for specific situations
and be able to justify choices made.

Understand that there are different types of storage
device. Candidates need to know about the
characteristics of each type (magnetic, optical and
flash) and understand the benefits and drawbacks of
each and be able to recommend an appropriate type of
device for a given situation and justify the choice.

Understand the purpose of ROM and RAM within a
computer system, their characteristics, and the role
they play in the running of a range of different
computers e.g., mobile devices, embedded systems etc.

Why there is a need for virtual storage, how virtual
storage works and the benefits and drawbacks of using
virtual storage.

Why an operating system is required, along with the
different tasks it performs within a computer system
(e.g., resource management, file management,
interrupt handling, security, providing a platform for
software to run, providing a user interface and
providing utilities).

How operating systems manage memory. Candidates
need to understand the need for, purpose and function
of paging to divide memory into usable fixed-size pages
and how these aid in the transfer of memory for
example virtual memory. Candidates need to
understand what is meant by segmentation and how
memory is divided into segments to allow access to
memory. Candidates need to understand what is meant
by virtual memory and why this is needed in a computer
system. Candidates need to understand how paging is
used in virtual memory, and the benefits and drawbacks
of having and using virtual memory in a computer
system.

What is meant by a database. Candidates should be familiar
with basic database terminology such as fields, records and
tables. Candidates should know the difference between a
flat file and a relational database, and be able to explain the
benefits and limitations of each approach. Candidates
should have experience of setting up and using both a flat
file, and relational database.

What is meant by a primary key, foreign key and secondary
key and how each are used in a database. Candidates
should be able produce and follow Entity Relationship (ER)
diagrams which include 1:1, 1:M and M:M relationships.
Candidates should be able to identify how tables should be
linked.

Discuss a range of methods for capturing data (such as
forms, OCR, OMR and sensors) selecting data (such as
Query By Example and SQL), managing data (such as
changing data by manipulating it – e.g. arithmetic functions,
adding, editing, deleting the data) and exchanging data
(with common formats such as CSV, JSON and XML).
Candidates won’t be specifically asked about any one of
these methods but may be asked to discuss/justify suitable
methods as part of a more open question.

Understand the purpose of applications, and should have
knowledge and experience of a range of different
application software (for example database, word
processor, web browser, graphics manipulation etc.).
Candidates should be able to recommend the use of specific
and generic applications for given scenarios, justifying their
use and function(s) for a scenario.

Understand the purpose and role of utility software in a
computer system. Candidates should be familiar with a
range of utility software (e.g. disk defragmentation, file
management, device driver, system clean-up, security etc.)

Be able to explain the differences between open and closed
source software, the benefits and drawbacks to creator and
user of each of the licensing models and be able to
recommend which is used (with justification) for a specific
scenario.

How to use a range of arithmetic (+, -, /, *, MOD, DIV)
operators, Boolean (AND, OR, NOT, ==, >, <, =, >=, <=, !=)
operators and assignment operator (=).

How to read, trace and write programs using these
operators.

How to read, trace and write code using a range of string
handling functions (selecting substrings, converting to
upper/lowercase, converting between characters and their
ASCII values.

How to write programs that write to and read from text
files.

How to read/write/trace/amend simple programs in
procedural languages.

What is the purpose and need for assembly language?
How to read, write, trace, and amend programs written in
the Little Man Computer language.

What are the differences between the CISC and RISC
processors and the key features and benefits of each, and
the relative benefits of each architecture?

What is meant by a parallel system and the benefits and
limitations of parallel processing.

How parallel processing can be achieved through different
(i.e. multiple processors in the same computer or
distributed or multiple cores in a CPU or GPU).

What are the benefits of a multicore system in terms of
parallel processing and running multiple programs at the
same time.

How to use programming data types such as integer, real,
Boolean, character, string etc., choosing appropriate data
types for a situation or given data, and converting from one
data type to another (casting) when required.

Be able to describe what is meant by arrays (up to 3
dimensions), records, lists and tuples. Candidates are
expected to be able recognise when they can be used and
incorporate them in their programs to store data.

Understand the purpose and use of a record structure to
store data of different data types in a program. Candidates

Understand the purpose of interrupts within a
computer system. Why an interrupt might be
generated, and what happens within CPU and memory
in order to call an interrupt service routine.

Understand the need for scheduling of tasks by an
operating system and the benefits that scheduling
brings. Candidates need to understand that there are
different scheduling algorithms, which each have
benefits and drawbacks for tasks with specific
characteristics.

Understand how the following scheduling algorithms
work; round robin, first come first served, multi-level
feedback queue, shortest job first and shortest
remaining time.

What are the different (and often overlapping)
classifications of operating systems (distributed,
embedded, multi-tasking, multi-user and real time),
including the key features of each. Candidates should
be able to recommend (and justify) a type of operating
system for a given scenario.

What is the role of the BIOS in a computer system, and
the steps that the BIOS goes through to start a
computer?

What is meant by ‘device drivers’ and why they are
needed for communication between hardware and the
operating system.

Be able to describe what is meant by a virtual machine,
how they can be used to execute intermediate code,
how they can be used to run a software driven machine
inside a physical machine and the benefits and
drawbacks of each approach.

How and why computers store data as binary, and that
a binary number can have a variety of different
interpretations depending on what is being stored (e.g.
numeric, text, image, sound).

Be able to convert positive whole numbers to binary
and from binary to denary.

How to store negative numbers using Sign and
Magnitude and Two’s Complement. Candidates should
be able to convert denary numbers to sign and
magnitude, and two’s complement – and vice-versa.

Understand the need for translators when writing
programs. Candidates need to have knowledge of the
differences in operation of interpreters and compilers, from
these they need to be able to assess the benefits and
drawbacks of using each type, and recommend with
justification which should be used in a specific scenario.
Candidates need to understand the role of an assembler
and how it differs from interpreters and compilers.

Understand the definition and purpose of a network.

Candidates need to understand the purpose of, and
importance of using, protocols. Candidates should be able
to discuss examples of protocols that may be used in a
network/ the internet (but will not be asked to recall
information about any specific protocol). Candidates should
understand the term standard, and the purpose and need
for standards in a network (or any situation where data is
transferred).

What is the purpose and benefits of layering protocols,
particularly within the TCP/IP stack? Candidates need to
know the different layers within the TCP/IP stack and the
purpose of each. Candidates need to understand how data
is transmitted on the Internet, the use of IP addresses and
packets in the transfer of data. (NB: Candidates are not
expected to be familiar with the OSI model).

Candidates are expected to understand the terms LAN and
WAN.

Candidates need to understand how the Domain Name
System is used to find the IP address of a URL.

Candidates need to understand the purpose, function,
benefits and drawbacks of both packet and circuit
switching.

Candidates need to understand the difference between a
client-server and peer-to-peer network. Candidates need to
know the benefits and drawbacks of each type of network
and be able to recommend one for a given scenario.

What is the purpose of HTML, CSS and JavaScript.
Candidates need to know when each language/markup
would be used, and what its purpose and function is.
Candidates should have experience of writing webpages
using HTML, CSS and JavaScript. Candidates need to be able
to recognise the code in Appendix 5d, and be able to read,

should have experience of using records to store, search,
manipulate and retrieve data.

Understand the purpose and use of a list to store data in a
program. Candidates should have experience of using lists
to store, search, manipulate and retrieve data.

Understand the purpose and use of tuples to store data in
a program. Candidates should have experience of using
tuples to store, search, manipulate and retrieve data.
Candidates need to understand the behaviour of stacks and
queues (i.e. LIFO and FIFO).

Be able to understand the constructs of sequence, iteration
and branching. Candidates must be able to use these
constructs independently of each other, and combine them
to produce a solution. These include the selection
statements of if (include elseif and else) and select case
statements. These include both condition-based iteration
(e.g. while, repeat until) and count controlled iteration (e.g.
for) – as well as how condition based can be used as count
controlled iteration.

Be able to read code using these constructs, create code
using these constructs and trace code (for example using a
trace table).

To understand the use and need for variables in a program,
and must understand the difference, benefits and
drawbacks of both global and local variables. Candidates
must be able to recognise where local and global variables
are used, and the impact that these have on the program,
for example the amount of memory used by the program.
Candidates need to understand how a program using
global variables can be changed to use local variables – and
vice-versa.

Understand what is meant by modular code, and how this
can be produced using functions and procedures.
Candidates need to understand the differences between
functions and procedures and how each is used within a
program. Candidates need to be able to read, trace and
write code using functions and procedures.

Understand the purpose and use of parameters within a
program, and how they are used in functions and
procedures. Candidates will need to be able to read, trace
and write code that makes use of parameters.

Be able to perform addition and subtraction on integer
binary numbers. (These numbers could be positive or
negative using two’s complement representation.)

Understand the purpose and potential uses of
hexadecimal for example where and why they are used
instead of binary and the benefits of using hexadecimal
over alternatives such as binary. Candidates should be
able to convert denary numbers to hexadecimal and
vice-versa and from binary to hexadecimal and vice-
versa.

How (positive and negative) real numbers are
represented in a binary floating-point representation,
and should be able to convert between a denary
number and a real binary number. (NB the
representation used for the exam is the mantissa and
exponent both represented using two’s complement.)

Candidates should understand the need for normalised
floating-point numbers. Candidates should be able to
normalise a floating-point number.

How characters are represented in binary.

Candidates should understand the need for a character
set and how a computer makes use of a character set.
Candidates should be aware of the ASCII and UNICODE
character sets and be able to explain the differences
between these and the benefits of each. Candidates
should be able to use a character set, or part of a
character set, to translate characters into binary and
vice-versa. (Candidates are not expected to memorise
any values in a character set)

What is abstraction, it’s purpose in the design and
creation of computer programs. Candidates need to
know about the benefits of abstraction and be able to
apply these benefits to specific scenarios. Candidates
may be given a scenario and be asked how abstraction
can be applied to it, or how it has already been applied.
Candidates need an understanding of the differences
between reality and abstraction.

Understand that situations require inputs and output,
and that outputs can be both digital or in a hard copy

write, amend and interpret code using HTML, CSS and
JavaScript.

What is the need for compression (when transferring data
over a network). Candidates need to understand the
difference between lossy and lossless compression, and the
benefits and drawbacks of each type. Candidates need to
be able to recommend a type of compression for a given
scenario.

What are AND, OR, NOT and XOR gates? Candidates should
be familiar with the logic of each Boolean operator, and the
truth tables. Candidates should be able to construct logic
gate diagrams from a Boolean expression and vice-versa.
Candidates should be able to construct truth tables from
Boolean expressions and logic gate diagrams.

Understand that Boolean expressions can be simplified and
should have experience of simplifying expressions using
Karnaugh maps. Candidates should be able to create,
complete and interpret Karnaugh maps to simplify Boolean
expressions.

What is the need for, and purpose of laws relating to the
use of computers?

What is the purpose and role of the Data Protection Act.
Candidates will need to understand the different rules that
are within the DPA and how these impact the use of
computers and the storage of data by organisations. This
should include what organisations can and cannot do.

Candidates need to understand the purpose and principles
of the Computer Misuse Act, including the actions that it
prohibits.

Understand the purpose and principles of the Copyright and
Patents Act, including the actions that it prohibits.

Understand the purpose and principles of the Regulation of
Investigatory Powers Act, and what this allows in
interception and monitoring of electronic communication.

Understand how the regulations impact organisations and
the use of computers and electronic communication.

We are aware the law is constantly changing and some of
the mentioned laws/acts (most notably the DPA) are likely
to change over the course of the specification. Answers will
be accepted that use an interpretation of the law based on

Understand the difference between passing a parameter
by value and by reference, they need to understand the
benefits and drawbacks of each, recommending which
should be used for a given situation. Candidates need to be
able to read, trace and write code that makes use of
parameters passed both by value and by reference.

Understand how an IDE can be used to produce code, and
understand the range of features and tools that are within
an IDE that can be used to help produce and debug a
program.

format. Candidates may be given a description,
diagram, or code for a scenario, and they will need to
demonstrate an understanding of what inputs and
outputs are needed, and/or are used in that specific
scenario.

Be able to determine what else they need to know
before they can produce a solution, for example what
information is missing and what else will affect that
solution.

Understand the purpose, benefits and drawbacks of
reusable program components. Candidates should
understand how these components can be reused, and
for a given scenario/program they will need to be able
to identify the subprograms that will be needed.
Candidates may then be required to write code for
these reusable components.

Be able to deconstruct a program and identify the
component parts that will make it up, for example
listing the parts or completing a structure diagram.
Candidates may be given some component parts and be
asked to complete these from a written description or
pseudocode for a program.

Be able to identify the steps that will need to take place
to complete the algorithm or program, and be able to
write these in a suitable format, or put a given list into
the correct order to produce a working program.
Candidates may need to write pseudocode or draw a
flow chart to show this sequencing of steps.

For a given scenario, candidates need to be able to
identify where sub-procedures may be used, and then
write appropriate pseudocode for these sub-
procedures, making use of parameters where
appropriate.

Given a structure diagram, they will need to interpret,
or complete to identify these sub-procedures.

Understand that decisions are made within programs,
and they need to be able to identify where these
decisions will take place within an algorithm or
program, and be able to understand what these
decisions are and the impact of these decisions on the
algorithm/program and the next (and final) outcomes

when the specification was started or when the
examination was sat.

Understand what is meant by moral, social, ethical and
cultural issues in relation to the use of computers.

Understand how the use of computers, and the increasing
use of computers in the work force has moral, social, ethical
and cultural implications and risks to a variety of people
such as the employees, employers, society and
organisations.

Understand how the use of computers to make decisions
automatically has moral, social, ethical and cultural
implications and risks to a variety of people such as those
people who make the decisions, the people the decisions
affect, and the need for additional collection of information
to ensure the decisions are accurate and valid.

Understand how the development of artificial intelligence
has moral, social, ethical and cultural impacts on a variety
of people.

How the environmental effects of computers (such as
disposal, energy use) have moral, social, ethical and cultural
implications.

How the Internet and censorship on the Internet has moral,
social, ethical and cultural implications.

What are the moral, social, ethical and cultural implications
of using computers to monitor behaviour (such as CCTV,
tracking phone calls, GPS, monitoring emails)?

What are the moral, social, ethical and cultural implications
of using computers to analyse personal information (such
as the gathering, storing and analysing of medical records)

How different cultures impact on the use of and creation of
computers and programs.
How colours have different meanings in different cultures
for example red means danger in one culture, and luck in
another. Candidates need to consider how these will impact
the creation of computer applications.

from the algorithm/program. Candidates need to
understand that there can be many different routes
through a program, and understand how decisions
influence these routes and outcomes.

Understand the different models that can be followed
to produce a program (explicitly the waterfall lifecycle,
agile methodology, extreme programming, the spiral
model and rapid application development). Candidates
need to understand the tasks, processes, benefits and
drawbacks of each model and the similarities and
differences between each. Candidates need to
understand where each model is most suitable to use,
and be able to justify the use in a situation.

Candidates need to be able to write algorithms using
flow charts, pseudocode and/ or program code.
Candidates need to be able to follow the code as shown
in the OCR pseudocode guide, but are not expected to
write code in this. Candidate’s code is not expected to
be syntactically correct, but must use appropriate code
structures.

Be able to use black box testing, white box testing,
alpha testing and beta testing whilst producing their
own programs. Candidates need to understand how
each testing strategy can be used in a situation, and the
benefits and drawbacks of each method, and apply this
to a given situation to recommend appropriate testing
strategies.

Have experience of using suitable test data to test their
own programs.

Understand the use of test data and apply this to a given
program.

Understand how dry runs can be used in the
development and testing of programs, and be able to
use dry runs to test given code. Understand the need
for and importance of end user feedback.

Be able to write algorithms using flow charts,
pseudocode and program code. Candidates need to be
able to follow the code as shown in the OCR
pseudocode guide, but are not expected to write code
in this syntax. Candidate’s code is not expected to be
syntactically correct, but must use appropriate code
structures.

Understand the need for standard sorting algorithms.
Candidates need to understand how the sorting
algorithms bubble and insertion work and the situations
when each can, and cannot be used. Candidates need
to be able to use the algorithms to sort data, and
complete, write and correct algorithms to perform each
sorting algorithm.

Understand the need for standard searching
algorithms. Candidates need to understand how the
searching algorithms binary and linear work and the
situations when each can, and cannot be used.
Candidates need to be able to use the algorithms to
search data sets for specific values that may, or may not
exist in the data set. Candidates need to understand
when each searching algorithm can, and cannot be
used. Candidates need to be able to complete, write
and correct algorithms to perform each searching
algorithm.

Experience of using the data structures stacks and
queues. Candidates need to understand the differences
and similarities between stacks and queues. Candidates
need to be able to add and remove data from both
stacks and queues. Candidates need to understand how
pointers are used within stacks and queues. Candidates
need to understand how stacks and queues can be
implemented in a computer system, for example
through the use of an array with pointers.

Be able to read, correct and write algorithms to add and
remove data items, and manipulate data items in a
stack and queue.

Understand how the choice of algorithm can be
affected by the data set. Candidates need to
understand the impact of specific algorithms on speed
and memory use.

Be aware of how and when a program can use more
memory, or can take longer to run and be able to
compare algorithms (not expected to know about Big O
notation)

Assessment
topics

October baseline test, Dec progress test Progress tests: Jan/Feb, April Y12 PPE

Cross curricular
links/Character
Education

Maths Maths, Electronics, Problem solving,
Mirroring the practices in the real world of software
development

Environmental concerns
Business Studies/Economics
English language
Problem solving
Resilience
Mirroring the practices in the real world of software
development

