Curriculum Map: A Level Mathematics

YEAR 13

	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
Content	Trigonometry	Compound angles and	Differential equations	Kinematics in Two	<u>Moments</u>	
		harmonic form		Dimensions		Public
Declarative	Identities involving cot ² θ, sec ²		What a differential equation		What moments are	examinations
knowledge	θ and cosec ² θ	Double angle formulae and	is	3D column vectors and i , j , k		
		formulae for $sin(A \pm B)$,		notation	The S.I. units (Nm) for	
'I Know'	Understand the definitions of	$cos(A \pm B)$ and $tan(A \pm B)$;	What it means to solve a		moments	
	arcsin, arccos and arctan;	geometrical proofs of these	differential equation	Suitable assumptions to make		
	understand their graphs,	formulae		when modelling projectile	What the centre of mass is	
	their ranges and domains		What the separation of	motion		
		Expressions for $a \cos \theta + $	variables is		What a lamina is	
	Differentiation	$b\sin\theta$ in the equivalent		Differentiation and		
		forms of $r\cos(\theta \pm \alpha)$ or	What a general solution is	integration techniques from	The centre of mass of	
	The derivatives of <i>sin x,</i>	$r\sin(\theta \pm \alpha)$		pure mathematics	uniform beams and	
	cos x and tan x.		What a particular solution is		rectangular laminae can be	
		Algebraic fractions and		Equilibrium and Resolving	determined by symmetry	
	The derivative of $ln x$	Partial fractions	Parametric and implicit	Forces		
			functions		Statistical Hypothesis Testing	
	The definition of concave and	Algebraic division		What it means to resolve a		
	convex		What a parametric equation	force into components	The correlation coefficient	
		The factor theorem and	is			
	What a point of inflection is	remainder theorem for		What coplanar forces are	Statistical hypothesis tests for	
		division by expressions of the	What an implicit function is		the mean of a Normal	
	Sequences	form $(ax + b)$		Newton's Second Law for	distribution with known,	
			Proof	motion in situations where	given or assumed variance.	
	Increasing, decreasing and	Partial fractions		forces need to be resolved in		
	periodic sequences		What proof by contradiction	2D	Revision for public exams	
		Numerical Methods	entails			
	Notation for terms such as u ₁			Statistical Distributions		
		What the change of sign	Probability			
	Sigma notation for sums of	method is		The criteria for, and		
	series		What conditional probability	properties of, the Normal		
		What iteration, convergence	is	distribution		
	Formulae for the nth term of	and divergence are				
	an A.P. and a G.P.		The conditional probability			
		What the Newton-Raphson	formula $P(A B) = \frac{P(A B)}{P(B)}$			
	Formulae for the sum to n	method is	1(0)			
	terms of an A.P. and a G.P.					
		vinat a cobweb or staircase				
	Sum to infinity of a	ulagraffi is				
	convergent G.P.	What numerical integration is				
		what numerical integration is				

	Integration	What an ordinate is	PPE Revision			
	The integral of sin x, cos x and $\frac{1}{x}$	Lower and upper limits for the approximate area under a curve	Revisiting content and techniques covered previously to refresh and			
	A number of integration techniques, including integration by parts and integration by substitution	Binomial Expansion The binomial theorem for any rational <i>n</i>	deepen understanding			
Skills	Trigonometry	Compound angles and	Differential equations	Kinematics in Two	Moments	
Procedural Knowledge 'I know	Solve equations involving radians and/or sec θ , cosec θ and cot θ , using identities when necessary	harmonic form Use the addition formulae, for instance to derive the double angle formulae	Construct simple differential equations in pure mathematics and in context	Dimensions Derive and use the formulae for constant acceleration for motion in 2D using vectors	Answer questions in which forces act in perpendicular directions	Public examinations
how to'	Produce graphs of arccos, arcsin and arctan by reflection in $y = x$	Use the double angle formulae to solve equations and within integration	Evaluate the analytical solution of simple first order differential equations with separable variables, including finding particular solutions	Use calculus in kinematics for motion in 2D using vectors Model motion under gravity	Calculate clockwise, anticlockwise and resultant moments Statistical Hypothesis Testing	
	Produce exact values for sec, cosec and cot of key angles	Use harmonic form to solve equations or describe features of the resulting wave	Interpret the solution of a differential equation in the	in a vertical plane using vectors	Apply correlation coefficients as measures of how close	
	Apply simple transformations to graphs of sec, cosec and	function	context of solving a problem	Calculate with projectiles	data points lie to a straight line	
	cot, arccos, arcsin and arctan	Construct proofs involving trigonometric functions and	Parametric and implicit functions	Equilibrium and Resolving Forces	Interpret a given correlation	
	Differentiation	identities	Convert between Cartesian	Resolve forces in 2D and use	coefficient using a given p- value or critical value	
	Differentiate e^{kx} and a^{kx} , sin kx , cos kx , tan kx and ln x and related sums, differences and constant multiples	Use trigonometric identities to integrate trigonometric functions such as sin^2x	and Parametric forms Differentiate functions and relations defined parametrically or implicitly	Newton's Second Law for motion e.g. on an inclined plane Resolve forces in 2D to	Conduct a statistical hypothesis test for the mean of a Normal distribution with known, given or assumed	
	Use the product rule, the quotient rule and the chain rule	Algebraic fractions and Partial fractions Simplify rational expressions	Proof	analyse equilibrium of a particle under coplanar forces	variance and interpret the results in context	
	Find convex and concave sections of curves and points of inflection	including by factorising and cancelling, and algebraic division	Proof by contradiction (including the proof of the irrationality of √2 and proof of the infinity of primes)	Statistical Distributions Find probabilities using the Normal distribution	<u>Revision</u>	

	Use the factor and remainder			
Find the derivative of inverse	theorem	Probability	Link the Normal distribution	
functions			to histograms, mean,	
	Decompose rational functions	Use conditional probability,	standard deviation, points of	
<u>Sequences</u>	into partial fractions	including the use of tree	inflection and the binomial	
		diagrams, Venn diagrams,	distribution	
Work with sequences	Integrate functions that have	two-way tables		
including those given by a	been decomposed into			
formula for the <i>n</i> th term and	partial fractions	Use the conditional		
those generated by a simple		probability formula $P(A B) =$		
relation of the form $\chi_{n+1} = f(\chi_n)$		$\frac{P(A(B))}{P(B)}$		
	Numerical Methods	1 (D)		
Work with sigma notation for		Model with probability,		
sums of series	Locate roots of $f(X) = 0$ by	critiquing the assumptions		
Mark with arithmatic and	considering changes of sign	made and the likely effect of		
work with antimetic and	Poarrange an equation to an	more realistic assumptions		
geometric sequences and	iterative form			
301103				
Find a limit I	Solve equations	PPE Revision		
	approximately using simple			
Integration	iterative methods	Apply content and techniques		
integration	lierative methods	covered previously to		
Integrate $e^{kx} = \frac{1}{2} \sin kx$	Draw associated cobweb and	practice exam questions		
x_{x} , stit x_{x} ,	staircase diagrams			
cos kx and related sums,				
multiples	Solve equations using the			
multiples	Newton-Raphson method			
Use a definite integral to find	and other recurrence			
the area between two curves	relations of the form			
	$\mathcal{X}_{n+1} = \mathbf{g}(\mathcal{X}_n)$			
Carry out cases of integration				
by substitution and	Use the trapezium rule			
integration by parts;				
understand these methods as	Determine graphically			
the inverse processes of the	whether an approximation			
chain and product rules	over- or under-estimates the			
respectively	area under a curve			
	Improve an approximation by			
	increasing the number of			
	ordinates or string used in			
	numerical integration			
				1

		Binomial Expansion				
		Expand binomials raised to				
		rational and negative powers.				
		Lice Dinemial evenencions for				
		approximation				
Strategies	Trigonometry	Compound angles and	Differential equations	Kinematics in Two	Statistical Hypothesis Testing	
	<u>-</u>	harmonic form	<u></u>	Dimensions		Public
Conditional	Use trigonometric identities		Consider limitations and		When to use Normal	examinations
Knowledge	to rewrite the integrand	Use trigonometric identities	refinements to the models	Select appropriate techniques	probabilities in statistical	
_	_	within proof and integration	and solutions	for solving a problem in up to	hypothesis tests.	
'I know	Select appropriate steps in			3D in kinematics. for instance		
when to'	trigonometric proofs	Algebraic fractions and	Parametric and Implicit	using vectors and	When to use the standard	
		Partial fractions	functions	trigonometric functions	error of the mean in	
	<u>Sequences</u>			C .	hypothesis tests	
		When to use substitution or a	When to use implicit and	Use vectors and		
	When to evaluate a result on	comparing coefficients	parametric differentiation	trigonometric identities to	Revision	
	the calculator and when to	techniques, or a combination	techniques.	solve projectile motion		
	provide an exact form	of these, to decompose		problems		
		rational functions into partial	<u>Probability</u>			
	When a sum to infinity can be	fractions.		If appropriate when making		
	found		When to draw tree diagrams,	calculations about projectile		
		When to apply the factor	Venn diagrams or two-way	motion, select one solution		
	Use sequences and series in	theorem and remainder	tables to assist in probability	from a quadratic equation		
	modelling, for instance with	theorem to a range of	problems	and justify the rejection of		
	compound interest	problems		the other value		
			When to simplify problems or			
	Differentiation	Decompose rational functions	make assumptions in order to	Statistical Distributions		
		Into partial fractions in order	use probability rules and			
	when to use the product	to integrate them	Iormulae	Use the Normal distribution		
	chain rule and combinations	Numerical Methods	PPE Povision	as a model.		
	of those in differentiation	Numerical Methods	FFL REVISION	Coloct on one resists		
	problems	When change of sign	Determining which content is	Select an appropriate		
	problems	methods can fail	relevant and which strategies			
	Apply differentiation to find		will be efficient and effective	reasoning including		
	noints of inflection and	When the Newton-Baphson	for a given question	recognising when a Binomial		
	concave and convex sections	method may fail		or Normal model may not be		
	of curves.			appropriate		
		Binomial Expansion		sphiohing		
	Apply differentiation to					
	problems involving	When the expansion is valid				
	connected rates of change	and why				

	Integration Integrate by substitution, integrate by parts or integrate by inspection.					
Key Questions	Questions will use the following question stems to assess the understanding of the content above: Evaluate Find Simplify Express in the form Solve Sketch Justify Prove that State your modelling assumptions.	Questions will use the following question stems to assess the understanding of the content above: Evaluate Find Simplify Express in the form Solve Sketch Justify Prove that	Questions will use the following question stems to assess the understanding of the content above: Evaluate Find Simplify Express in the form Solve Sketch Justify Prove that State your modelling assumptions.	Questions will use the following question stems to assess the understanding of the content above: Evaluate Find Simplify Express in the form Solve Sketch Justify Prove that State your modelling assumptions.	Questions will use the following question stems to assess the understanding of the content above: Evaluate Find Simplify Express in the form Solve Sketch Justify Prove that State your modelling assumptions.	
Assessment topics	PPE retests (Sept) if needed Topic testing ('10 th lesson testing') each fortnight	Topic testing ('10 th lesson testing') each fortnight	Topic testing ('10 th lesson testing) each fortnight	Testing A level Pure Mathematics during PPE fortnight	Final testing prior to public examinations in Pure Mathematics, Statistics and Mechanics	
Cross curricular links/ Character Education	Links to Business and Economics (compound interest) Links to Science and Engineering (differentiation and integration) Aspiration and Challenge, Persistence and Resilience, Initiative and Confidence, Communication and Mutual Support	Links to Science (wave forms and equation solving) Aspiration and Challenge, Persistence and Resilience, Initiative and Confidence, Communication and Mutual Support	Links to Science, Economics and Business (probability) Science (differential equations and probability) Aspiration and Challenge, Persistence and Resilience, Initiative and Confidence, Communication and Mutual Support	Links to Science, Psychology, Economics, Business and Geography (statistical distributions) Links to Science (kinematics and forces) Aspiration and Challenge, Persistence and Resilience, Initiative and Confidence, Communication and Mutual Support	Links to Science, Psychology and Geography (hypothesis testing) Links to Science and Design (centres of mass and moments) Aspiration and Challenge, Persistence and Resilience, Initiative and Confidence, Communication and Mutual Support	