YEAR 13

	Integration The integral of $\sin x, \cos x$ and $\frac{1}{x}$ A number of integration techniques, including integration by parts and integration by substitution	What an ordinate is Lower and upper limits for the approximate area under a curve Binomial Expansion The binomial theorem for any rational n	PPE Revision Revisiting content and techniques covered previously to refresh and deepen understanding			
Skills Procedural Knowledge ‘I know how to'	Trigonometry Solve equations involving radians and/or $\sec \theta, \operatorname{cosec} \theta$ and $\cot \theta$, using identities when necessary Produce graphs of arccos, arcsin and arctan by reflection in $y=x$ Produce exact values for sec, cosec and cot of key angles Apply simple transformations to graphs of sec, cosec and cot, arccos, arcsin and arctan Differentiation Differentiate $e^{k x}$ and $a^{k x}$, $\sin k x, \cos k x, \tan k x$ and $\ln x$ and related sums, differences and constant multiples Use the product rule, the quotient rule and the chain rule Find convex and concave sections of curves and points of inflection	Compound angles and harmonic form Use the addition formulae, for instance to derive the double angle formulae Use the double angle formulae to solve equations and within integration Use harmonic form to solve equations or describe features of the resulting wave function Construct proofs involving trigonometric functions and identities Use trigonometric identities to integrate trigonometric functions such as $\sin ^{2} x$ Algebraic fractions and Partial fractions Simplify rational expressions including by factorising and cancelling, and algebraic division	Differential equations Construct simple differential equations in pure mathematics and in context Evaluate the analytical solution of simple first order differential equations with separable variables, including finding particular solutions Interpret the solution of a differential equation in the context of solving a problem Parametric and implicit functions Convert between Cartesian and Parametric forms Differentiate functions and relations defined parametrically or implicitly Proof Proof by contradiction (including the proof of the irrationality of $\sqrt{ } 2$ and proof of the infinity of primes)	Kinematics in Two Dimensions Derive and use the formulae for constant acceleration for motion in 2D using vectors Use calculus in kinematics for motion in 2D using vectors Model motion under gravity in a vertical plane using vectors Calculate with projectiles Equilibrium and Resolving Forces Resolve forces in 2D and use Newton's Second Law for motion e.g. on an inclined plane Resolve forces in 2D to analyse equilibrium of a particle under coplanar forces Statistical Distributions Find probabilities using the Normal distribution	Moments Answer questions in which forces act in perpendicular directions Calculate clockwise, anticlockwise and resultant moments Statistical Hypothesis Testing Apply correlation coefficients as measures of how close data points lie to a straight line Interpret a given correlation coefficient using a given p value or critical value Conduct a statistical hypothesis test for the mean of a Normal distribution with known, given or assumed variance and interpret the results in context	Public examinations

		Binomial Expansion Expand binomials raised to rational and negative powers. Use Binomial expansions for approximation				
Strategies Conditional Knowledge ‘I know when to'	Trigonometry Use trigonometric identities to rewrite the integrand Select appropriate steps in trigonometric proofs Sequences When to evaluate a result on the calculator and when to provide an exact form When a sum to infinity can be found Use sequences and series in modelling, for instance with compound interest Differentiation When to use the product rule, the quotient rule, the chain rule and combinations of these in differentiation problems Apply differentiation to find points of inflection and concave and convex sections of curves. Apply differentiation to problems involving connected rates of change	Compound angles and harmonic form Use trigonometric identities within proof and integration Algebraic fractions and Partial fractions When to use substitution or a comparing coefficients techniques, or a combination of these, to decompose rational functions into partial fractions. When to apply the factor theorem and remainder theorem to a range of problems Decompose rational functions into partial fractions in order to integrate them Numerical Methods When change of sign methods can fail When the Newton-Raphson method may fail Binomial Expansion When the expansion is valid and why	Differential equations Consider limitations and refinements to the models and solutions Parametric and Implicit functions When to use implicit and parametric differentiation techniques. Probability When to draw tree diagrams, Venn diagrams or two-way tables to assist in probability problems When to simplify problems or make assumptions in order to use probability rules and formulae PPE Revision Determining which content is relevant and which strategies will be efficient and effective for a given question	Kinematics in Two Dimensions Select appropriate techniques for solving a problem in up to 3D in kinematics, for instance using vectors and trigonometric functions Use vectors and trigonometric identities to solve projectile motion problems If appropriate when making calculations about projectile motion, select one solution from a quadratic equation and justify the rejection of the other value Statistical Distributions Use the Normal distribution as a model. Select an appropriate probability distribution for a context, with appropriate reasoning, including recognising when a Binomial or Normal model may not be appropriate	Statistical Hypothesis Testing When to use Normal probabilities in statistical hypothesis tests. When to use the standard error of the mean in hypothesis tests Revision	Public examinations

	Integration Integrate by substitution, integrate by parts or integrate by inspection.					
Key Questions	Questions will use the following question stems to assess the understanding of the content above: Evaluate... Find... Simplify... Express in the form... Solve... Sketch... Justify... Prove that... State your modelling assumptions.	Questions will use the following question stems to assess the understanding of the content above: Evaluate... Find... Simplify... Express in the form... Solve... Sketch... Justify... Prove that...	Questions will use the following question stems to assess the understanding of the content above: Evaluate... Find... Simplify... Express in the form... Solve... Sketch... Justify... Prove that... State your modelling assumptions.	Questions will use the following question stems to assess the understanding of the content above: Evaluate... Find... Simplify... Express in the form... Solve... Sketch... Justify... Prove that... State your modelling assumptions.	Questions will use the following question stems to assess the understanding of the content above: Evaluate... Find... Simplify... Express in the form... Solve... Sketch... Justify... Prove that... State your modelling assumptions.	
Assessment topics	PPE retests (Sept) if needed Topic testing (' $10{ }^{\text {th }}$ lesson testing') each fortnight	Topic testing (' $10^{\text {th }}$ lesson testing') each fortnight	Topic testing (' $10^{\text {th }}$ lesson testing) each fortnight	Testing A level Pure Mathematics during PPE fortnight	Final testing prior to public examinations in Pure Mathematics, Statistics and Mechanics	
Cross curricular links/ Character Education	Links to Business and Economics (compound interest) Links to Science and Engineering (differentiation and integration) Aspiration and Challenge, Persistence and Resilience, Initiative and Confidence, Communication and Mutual Support	Links to Science (wave forms and equation solving) Aspiration and Challenge, Persistence and Resilience, Initiative and Confidence, Communication and Mutual Support	Links to Science, Economics and Business (probability) Science (differential equations and probability) Aspiration and Challenge, Persistence and Resilience, Initiative and Confidence, Communication and Mutual Support	Links to Science, Psychology, Economics, Business and Geography (statistical distributions) Links to Science (kinematics and forces) Aspiration and Challenge, Persistence and Resilience, Initiative and Confidence, Communication and Mutual Support	Links to Science, Psychology and Geography (hypothesis testing) Links to Science and Design (centres of mass and moments) Aspiration and Challenge, Persistence and Resilience, Initiative and Confidence, Communication and Mutual Support	

