Curriculum Map: A Level Mathematics

YEAR 12

	What polynomial and reciprocal graphs look like The effect of various graphical transformations The factor theorem	Proof The concept of mathematical proof The terms: Proof by exhaustion Proof by deduction Disproof by counterexample Binomial Expansion What a binomial is Pascal's triangle The formulae for nCr and n !	What magnitude/direction form means What a position vector is What the resultant is What parallel means What collinear means Statistical sampling What a 'population' and a 'sample' are The following sampling techniques: simple random sampling, opportunity sampling, stratified sampling, systematic sampling, quota sampling and cluster sampling. That different samples can lead to different conclusions about the population	Data Presentation and Interpretation That data can be presented in a number of different ways such as histograms (single variable data) and scatter diagrams (bivariate data) The definition of a probability distribution The following measures of central tendency: mean, mode and median The following measures of spread: range, interquartile range, variation and standard deviation The product moment correlation coefficient Probability and Probability distributions The definitions of mutually exclusive events and independent events The conditions for the Binomial distribution	test, 2-tail test, critical value, critical region, acceptance region, p-value That the significance level is the probability of incorrectly rejecting the null hypothesis	What a composite function is When functions have inverses The relationship between functions and their inverses and their graphs
Skills Procedural Knowledge ‘I know how to'	Quadratics Sketch quadratic graphs Solve quadratic equations Factorise quadratics Use the quadratic formula	Exponentials and Logarithms Sketch exponential graphs $y=a^{x}$ for $a>0$ and $y=$ e^{x} and simple transformations of these functions	Differentiation Use the derivative of $f(x)$ to find the equation of a tangent Differentiate polynomials from first principles	Kinematics Convert between commonly used S.I. units Convert from non-standard units	Forces, Newton's Laws, Statics and Dynamics Model forces as vectors Draw force diagrams for bodies that are at rest or moving with constant	Revision and PPEs Then... Trigonometry and Circular Measure Use exact trigonometric values.

Complete the square
Determine the number of solutions a quadratic has

Indices and surds
Use the laws of indices
Manipulate, use and simplify surds

Inequalities
Solve linear and quadratic inequalities.

Represent linear and quadratic inequalities graphically.

Express solutions of inequalities using set notation.

Simultaneous equations
Solve simultaneous equations by substitution.

Solve simultaneous equations by elimination.

Represent and solve simultaneous equations graphically.

Trigonometry

Sketch graphs of sine, cosine and tangent and related functions

Use the sine and cosine rules to find missing angles and sides

Use $\log _{a} x$ as the inverse of a^{x} is for $a>0$ and $x \geq 0$

Use $\ln x$ as the inverse of e^{x}

Simplify expressions involving logarithms

Solve equations of the form $a^{x}=b$, including $e^{x}=b$.

Reduce a non-linear relation to linear form.

Estimate parameters in the relationships of the form $y=a x^{n}$ and $y=k b^{x}$ by plotting graphs, drawing lines of best fit and calculating and interpreting gradients and intercepts.

Perform simple

 transformations of $y=e^{x}$ and $y=\ln x$.Identify and describe single transformations of the functions a^{x} and e^{x}.

Use given conditions to determine the values of unknown constants in
$y=A e^{b x}+C$
or in $P=A k^{t}+C$.
Translate a situation in context into a mathematical model.

Find the second derivative Sketch gradient graphs

Interpret gradients as rates of change

Differentiate x^{n} (for rational values of n) and related constant multiples, sums and differences

Apply differentiation to find gradients, tangents and normal

Apply differentiation to find stationary points.

Identify where functions are increasing or decreasing.

Coordinate Geometry

Use the equation of a straight line, including the forms
$y-y_{1}=m\left(x-x_{1}\right)$ and
$a x+b y+c=0$.

Use the coordinate geometry of the circle including using the equation of a circle in the form

$$
(x-a)^{2}+(y-b)^{2}=r^{2}
$$

Complete the square to find the centre and radius of a circle.

Vectors

Use and interpret kinematics graphs, including the gradient of a displacement-time graph and the gradient of, or area under, a velocity-time graph

Use and derive the SUVAT formulae.

Use calculus in kinematics for motion in a straight line:

$$
v=\frac{\mathrm{d} r}{\mathrm{~d} t} \quad a=\frac{\mathrm{d} v}{\mathrm{~d} t}=\frac{\mathrm{d}^{2} r}{\mathrm{~d} t^{2}}
$$

$$
r=\int v \mathrm{~d} t \quad v=\int a \mathrm{~d} t
$$

Sketch either a
displacement-time or velocity-time graph for a given scenario.

Derive the SUVAT formulae, for instance from a velocitytime graph.

Data Presentation and

 InterpretationInterpret diagrams for single-variable data, including understanding that area in a histogram represents frequency.

Connect to probability distributions.

Interpret scatter diagrams and regression lines for bivariate data, including
velocity or constant acceleration

Find the resultant of several forces acting at a point including by use of a vector diagram or resolving into perpendicular components

Use Newton's three Laws of Motion to find unknown values

Work with weight and motion in a straight line under gravity

Identify action and reaction forces

Statistical Hypothesis Testing

Conduct a statistical hypothesis test for the proportion in the binomial distribution and interpret the results in context

Calculate p-values and critical regions

Calculate arc lengths and areas of sectors and segments

Use small angle approximations

Sketch graphs of reciprocal trigonometric functions

Functions and
Transformations

Find the modulus of a
function and sketch its graph.

Solve equations involve the modulus function

Find the maximum domain and range of a function

Find composite functions.

Find inverse functions and sketch their graphs

Describe combinations of graph transformations and sketch associated graphs

	Solve trigonometric equations in a given interval Find the area of a triangle Polynomials and graphs Manipulate polynomials algebraically Use the factor theorem to factorise and divide polynomials Sketch curves defined by polynomials Describe graph transformations and sketch associated graphs Sketch graphs of the form $y=\frac{a}{x}$ and $y=\frac{a}{x^{2}}$ and find their asymptotes	Proof Use and interpret logical symbols and implication symbols. Use the structure of mathematical proof, proceeding from given assumptions through a series of logical steps to a conclusion. Use different methods of proof including: - Proof by exhaustion - Proof by deduction - Disproof by counterexample Binomial Expansion Use the Binomial formula to expand binomials of the form $(a+b)^{n} \text { and }(1+x)^{n}$ Use Pascal's triangle, the formula for nCr and the choose function on the calculator to find Binomial coefficients	For 2 D vectors, convert between component form and magnitude/direction form Add vectors diagrammatically Perform algebraically the addition of vectors and multiplication by a scalar Calculate the distance between two points defined by position vectors Identify parallel vectors Demonstrate collinearity Statistical Sampling Use samples to make informal inferences about the population Use a variety of different sampling techniques Select or critique sampling techniques in the context of solving a statistical problem	recognition of scatter diagrams Interpret correlation and understand that correlation does not imply causation Calculate and interpret measures of central tendency and variation, both from raw data and from summary statistics Recognise and interpret possible outliers in data sets and statistical diagrams Select or critique data presentation techniques in the context of a statistical problem Probability and Probability distributions Use mutually exclusive and independent events when calculating probabilities Calculate probabilities using the binomial distribution		
Strategies Conditional Knowledge ‘l know when to'	Quadratics Factorise, apply the quadratic formula or complete the square to solve a quadratic equation Put a quadratic in factorised form or completed square form to sketch a quadratic	Exponentials and Logarithms Apply an exponential model Form and use exponential equations to make predictions	Differentiation Apply the limiting process during differentiation by first principles Use the laws of indices to assist differentiation	Kinematics Use SUVAT formulae (for constant acceleration) Use calculus in kinematics (for variable acceleration) Give a final answer to a particular degree of	Forces, Newton's Laws, Statics and Dynamics Apply Newton's Laws of Motion as appropriate to solve problems, for instance involving connected particles	AS Revision and AS PPEs Then... Trigonometry and Circular Measure When to evaluate a result and when to show it with relevant steps

Apply the discriminant
Apply the techniques for quadratics to disguised quadratics and related functions

Indices and surds
Apply the laws of indices
Leave answers in surd form

Inequalities
Use graphical and algebraic techniques to solve inequalities

Simultaneous equations
Solve simultaneous equations using a substitution, elimination or graphical technique

Model problems by forming and solving simultaneous equations

Trigonometry

Use the symmetries of the graphs of sine, cosine and tangent to find multiple solutions to trigonometric equations

Apply the sine and cosine rules to geometrical problems

Apply the laws of

 logarithms to simplify expressions and solve equationsUse logarithmic graphs to estimate parameters

Use exponential growth and decay in modelling

Consider limitations and refinements in exponential models

Manipulate logarithms and exponentials if required within the solution to a problem

Proof

Apply different methods of proof including:

- Proof by exhaustion
- Proof by deduction
- Disproof by counterexample and combinations of these to prove a variety of different theorems and identities

Binomial Expansion
Apply the different forms of the Binomial formula to expand Binomials

Use Pascal's triangle, the formula for nCr or the choose function

Use the second derivative to determine the nature of a stationary point

Coordinate Geometry
Use straight line models in a variety of contexts

Use of the following properties:

- the angle in a semicircle is a right angle
- the perpendicular from the centre to a chord bisects the chord
- the radius of a
circle at a given point on its circumference is perpendicular to the tangent to the circle at that point

Vectors

Interpret algebraic outcomes geometrically

Use vectors to solve problems in pure mathematics and in mechanics, for instance with velocities or forces

Select appropriate methods when solving a vector problem

Use a vector diagram to consider resultants
accuracy, dependent on the information given in the question

Data Presentation and Interpretation

Use scatter diagrams to assess correlation

Use histograms to represent single variable data

Choose appropriate measures of central tendency and spread to analyse data effectively and apply to large data sets

Use regression lines to estimate values from data and comment on the reliability of these estimates

Clean data, including dealing with missing data, errors and outliers

Probability and Probability distributions

Link to discrete and continuous distributions

Use simple, discrete probability distributions, including the binomial distribution, as models.

Apply SUVAT formulae in contexts involving forces

Use gravitational acceleration g to varying degrees of accuracy

Assume during motion under gravity that g remains constant, that objects can be treated as particles and that resistance forces are negligible

Make modelling assumptions as appropriate

Statistical Hypothesis

 TestingUse a sample to make an inference about the population

Apply the Binomial model in hypothesis testing

Construct a one tailed or two tailed test.

Find the critical region instead of the p-value and vice versa

Accept or reject the null hypothesis.

Apply graph transformations

Apply functions to different contexts

	Use trigonometric identities to solve equations and prove other identities Use the formula $\frac{1}{2} a b \sin c$ to find the area of a triangle Polynomials and graphs Apply the factor theorem to a range of problems Apply graph transformations Use proportional relationships and their graphs	Use Binomial expansions in approximations	Statistical Sampling Apply sampling techniques in the context of solving a statistical problem Use a sample to draw conclusions about the population			
Key Questions	Questions will use the following question stems to assess the understanding of the content above: Evaluate... Find... Simplify... Express in the form... Solve... Sketch... Justify... Prove that...	Questions will use the following question stems to assess the understanding of the content above: Evaluate... Find... Simplify... Express in the form... Solve... Sketch... Justify... Prove that... State your modelling assumptions.	Questions will use the following question stems to assess the understanding of the content above: Evaluate... Find... Simplify... Express in the form... Solve... Sketch... Justify... Prove that...	Questions will use the following question stems to assess the understanding of the content above: Evaluate... Find... Simplify... Express in the form... Solve... Sketch... Justify... Prove that... Critique... State your modelling assumptions.	Questions will use the following question stems to assess the understanding of the content above: Evaluate... Find... Simplify... Express in the form... Solve... Sketch... Justify... Prove that... Critique... State your modelling assumptions.	Questions will use the following question stems to assess the understanding of the content above: Evaluate... Find... Simplify... Express in the form... Solve... Sketch... Justify... Prove that...
Assessment topics	Baseline test (GCSE algebraic skills revisited through use of GCSE-AS transition material) Topic testing (' $10^{\text {th }}$ lesson testing') each fortnight	Topic testing (' $10^{\text {th }}$ lesson testing') each fortnight	Topic testing (' $10^{\text {th }}$ lesson testing') each fortnight	Topic testing (' $10^{\text {th }}$ lesson testing') each fortnight	Topic testing (' $10^{\text {th }}$ lesson testing') each fortnight	June PPEs (at AS standard in Pure Mathematics, Statistics and Mechanics)

Links to Science (indices and solving equations)

Aspiration and Challenge, Persistence and Resilience, Initiative and Confidence, Communication and Mutual Support

Links to Economics,

 Geography and Science (exponential growth) and Science (use of logarithms)Understand the difference between scientific and mathematical proof

Aspiration and Challenge, Persistence and Resilience, Initiative and Confidence, Communication and Mutual Support

Links to Geography, History Psychology and Science (Statistical sampling)

Links to Science (gradients and vector quantities)

Aspiration and Challenge, Persistence and Resilience, Initiative and Confidence, Communication and Mutual Support

Links to Science (S.I. units, kinematics, vector quantities)

Links to Geography, History Psychology and Science (Data presentation and interpretation)

Aspiration and Challenge, Persistence and Resilience, Initiative and Confidence, Communication and Mutual Support

Links to Science (forces,

 Newton's Laws of Motion, friction, equilibrium, resultant force)Links to Geography, Psychology and Science (Statistical hypothesis testing)

Aspiration and Challenge, Persistence and Resilience, Initiative and Confidence,
Communication and Mutual Support

Links to Science (radian measure)

Aspiration and Challenge, Persistence and Resilience, Initiative and Confidence, Communication and Mutual Support

