Curriculum Map: Mathematics Year 11 Higher Tier

In addition to Foundation tier content, Higher tier learners should also be able to

	Autumn	Autumn	Spring	Spring	Summer	Summer
	1	2	1	2	1	2
Content	<u>Sequences</u> Linear sequences	Direct and Inverse Proportion	Transformations Combinations of	<u>Circle Theorems</u> Circle nomenclature	Transformations of Graphs	Public exams
Declarative	Quadratic sequences	Equivalent ratios	transformations	Angles subtended at centre and circumference	Translations and	
knowledge	Special sequences	Dividing quantities in a given		Angle in a semicircle	reflections	
<i>(</i> ,		ratio	Similar Figures	Angles in the same segment		
'I Know'	Straight Line Graphs	Ratios and fractions	Enlargement	Angle between radius and chord	<u>Inequalities</u>	
	Gradients	Direct proportion	Similar shapes	Angle between radius and tangent	Inequalities in one	
		Inverse proportion		The alternate segment theorem	variable	
	Real-World Graphs		<u>Functions</u>	Cyclic quadrilaterals	Inequalities in two	
	Graphs of real-world	Trigonometry	Inverse functions	Mantana	variables	
	contexts	Exact trigonometric ratios	Composite functions	vectors		
	Areas under graphs	Area of a triangle		vector arithmetic and column vectors		
		Sine rule		Non Lincor Crophs		
		Cosine rule		Inon-Linear Graphs		
		Algebraic Solution of		Equations of circles		
		<u>Algebraic Solution of</u>		Parallel and perpendicular lines		
		<u>Equations</u>		Polynomial and Exponential functions		
Skills	Sequences	Direct and Inverse	Transformations	Circle Theorems	Transformations of	
	Generate a sequence from a	Proportion	Perform a sequence of	Becognise isosceles triangles drawn within	Granhs	
Procedural	formula for the <i>n</i> th term.	Use the proportionality symbol	isometric transformations	circles.	Identify and sketch	
Knowledge	Find a formula for the <i>n</i> th	and constant.	(reflections, rotations or	Apply and prove that	simple translations of	
	term of an arithmetic		translations) on a simple	- the angle subtended by an arc at the centre is	a given graph.	
ʻl know	sequence.	Investigate contexts that lead	shape.	twice the angle at the circumference,	0 0 1	
how to'		to direct or inverse proportion,		- the angle on the circumference subtended by	Identify and sketch	
	Use subscript notation for	including those that involve a	Describe the sequence of	a diameter is a right angle,	translations and	
	position-to-term and term-	power or root.	isometric transformations	- two angles in the same segment are equal,	reflections of the	
	to-term rules.		(reflections, rotations or	- a radius or diameter bisects a chord if and	graph, given its	
		Formulate equations and solve	translations) needed to	only if it is perpendicular to the chord,	equation.	
	Find a formula for the <i>nth</i>	problems involving a quantity in	transform an object to its	- for a point P on the circumference, the radius		
	term of a simple quadratic	direct or inverse proportion to	image and the changes	or diameter through P is perpendicular to the		
	sequence.	a power or root of another	and invariance achieved.	tangent at P,		
	Pocognico coguencos of	quantity.		- for a point P on the circumference, the angle		
	triangular square and cubo	Triana and at a		equals the angle subtended by the chord in the		
	numbers and simple	Irigonometry		onnosite segment	Inequalities	
	arithmetic progressions	and and 0 for 0 - 0 - 20 45 - CO		- the opposite angles of a cyclic quadrilateral	Solve quadratic	
		and $COS \oplus TOT \oplus = 0, 30, 45, 60$		are supplementary.	inequalities in one	
		and so degrees.			variable.	

Recognise Fibonacci and	Know the exact values of tan θ	Similar Figures		Solve (several) linear	
quadratic sequences and	for θ =0, 30, 45 and 60 degrees.	Prove that two triangles	<u>Vectors</u>	inequalities in two	
simple geometric		are congruent using the	Define different routes between stated	variables,	
progressions.	Manipulate Pythagoras'	cases: 3 sides (SSS), 2 sides	vertices, including involving scalars and parallel	representing the	
Generate and find <i>n</i> th terms	Theorem and trigonometric	and the included angle, 2	vectors.	solution set on a	
of other sequences.	formulae, using algebraic	angles and the included	Use vectors to solve geometric proof in	graph.	
	expressions or exact	side (ASA), right angle,	quadrilaterals and where vectors are given as		
Straight Line Graphs	trigonometry ratios to solve 3D	hypotenuse, side (RHS).	simple scalar multiples.	Set up and solve	
Find gradient from graph	problems.		Use vectors to solve geometric proof with	(several) linear	
using <u>change in y</u>		Apply congruent triangles	vector defined in ratios.	inequalities in two	
change in x	Use 2D representations of 3D	in calculations and simple		variables from	
Interpret straight line	solids to identify right angles	proofs, for instance	Non-Linear Graphs	context, representing	
gradients as rates of change.	and hence solve problems by	proving that the base	Identify intercepts and, using symmetry, the	the solution set on a	
	Pythagoras' Theorem and	angles of an isosceles	turning point of graphs of quadratic functions.	graph.	
Velocity as the gradient of a	Trigonometry.	triangle are equal.			
displacement-time graph		<u> </u>	Find the roots of a quadratic equation	Identify the solution	
Calculate or estimate	Know and apply the general	Prove that two triangles	algebraically.	sets of linear	
gradients of graphs and	sine formula to find the area for	are similar.		inequalities in two	
interpret in kinematic	any triangle.	Use similarity and ratios to	Sketch graphs of quadratic functions.	variables, using the	
contexts using distance-time	Know and apply the sine rule	determine missing sides or	identifying the turning point by completing the	convention of	
graphs, velocity-time graphs	and the cosine rules to find	scale factors.	square.	dashed and solid	
and financial graphs.	lengths and angles.			lines.	
An alwaha a san santa af		Identify the centre and	Recognise and sketch graphs of exponential		
Apply the concepts of		positive integer or	functions in the form $y = k^x$ for positive k.		
average and instantaneous	Algebraic Solution of	fractional scale factor of	2 I		
rate of change (gradients of	Equations	an enlargement of a	Use a table of values to plot other polynomial		
chords or tangents) in	Rearrange and solve quadratic	simple shape.	graphs and reciprocals.		
numerical, algebraic and	equations by completing the	Perform such an	Use a table of values or a formula to plot		
graphical contexts.	square and by using the	enlargement on a simple	exponential graphs.		
	guadratic formula.	shape.			
Real-World Graphs	•		Recognise and sketch graphs of simple		
Recognise and interpret	Set up and solve quadratic	Perform and recognise	polynomial and reciprocal graphs.		
graphs that illustrate direct	equations, include	enlargements with			
and inverse proportion.	manipulation of algebraic	negative scale factors.	Recognise and sketch the graphs of trig		
	fractions.		functions y=sin θ , y= cos θ and y=tan θ .		
Construct graphs in real-		Functions			
world contexts, such as		Recap function machines	Recognise and use the equation of a circle with		
distance-time, money		with inputs and outputs.	centre at the origin.		
conversion and temperature		Interpret the reverse	-		
conversion		process as the 'inverse	Calculate the equation of a line representing a		
		function'.	radius or diameter at a point on the		
Calculate or estimate areas		Interpret the succession of	circumference of a circle.		
under graphs.		two functions as a			
Interpret in the context of		'composite function'.	Calculate the equation of a tangent to a circle		
distance-time graphs and		P	at a given point.		
velocity-time graphs.			U - F	1	

Strategies Conditional Knowledge 'I know when to'	Sequences Link geometric progression to compound interest and depreciation. Straight Line Graphs Present chain of reasoning to achieve a given gradient result. Translate problems from kinematic or financial contexts into graphical form and interpret gradients to solve problems. <u>Real-World Graphs</u> Present chain of reasoning to achieve a given area result. Translate problems for kinematic or financial contexts into graphical form and interpret areas under graphs to solve problems	Direct and Inverse Proportion Solve proportionality problems set in a variety of context where direct or inverse proportionality must be implied. Trigonometry Construct chain of reasoning to achieve given result from information provided from diagrammatic representation of 3D frameworks in order to find missing lengths and angles of elevation. Understand and apply appropriate trigonometry formulae in range of contexts Algebraic Solution of Equations Set up and solve quadratic equations	Transformations Construct a chain of reasoning to describe the transformations from object to image using concise mathematical language. Determine a single transformation that will successfully map an object to its image, as previously defined by a series of transformations. <u>Similar Figures</u> Construct chain of reasoning to change between ratios of surface area and volume of similar solids. Link to flow rate and time to fill similar container type problems. <u>Functions</u> Define rules with function machines to generate results.	Circle Theorems Make deductions from mathematical information provided in a diagram and construct chain of reasoning to achieve a given result. Vectors Use vectors in complex geometric arguments and proofs <u>Non-Linear Graphs</u> Make deductions from equations to determine coordinates that will or will not feature on a graph	Transformations of Graphs Clearly present a valid argument to determine a pattern that links a series of related equations or graphs. Make links to lines of reflection, simple rotations (about the origin) and translations to define transformations of simple quadratic graphs. <u>Inequalities</u> Draw conclusions from graphs of linear and quadratic functions, e.g. identify coordinates which satisfy a set of linear inequalities.	
Examples of Key Questions	 1) Find a formula for the <i>n</i>th term of the sequence 5,11,19,29,41 2) Find the <i>n</i>th term of a) 1, V2, 2, 2V2 b) 1/2, 2/3, 3/4 	 x is inversely proportional to the square root of y. When x = 12 and y = 9 Find the value of x when y = 81. Find the height of a square based pyramid with edges of length 6cm. Leave your answer in surd form. 	1) a) Rotate triangle P 180° about the point (-1, 1).	1) D, E and F are points on the circumference of a circle, centre O. Angle $DOF = 130^{\circ}$. Work out the size of angle DEF . Give a reason for your answer.	1) Solve the inequality $x^2 + 5x > 6$	

	3) Here is the velocity-time graph of a car for 50 seconds. output output output<	3) Solve $2x^{2} = 3x + 5$ $\frac{2}{x} - \frac{2}{x+1} = 1$ 4) The diagram shows a cuboid ABCDEFGH. $\frac{AE = 4 \text{ cm}}{AD - 5 \text{ cm}}$ $\frac{AE = 4 \text{ cm}}{DC - 8 \text{ cm}}$ $AE = 4 \text{$	2) Two prisms, A and B, are mathematically similar. The volume of prism A is 12 000 cm ³ . The volume of prism B is 49 152 cm ³ . The total surface area of prism B is 9728 cm ² . Calculate the total surface area of prism A. 3) $f(x) = 2x^2$ and $g(x) = 4x + 3$. Calculate $gf(x)$.	 2) This diagram shows a trapezium PQRS PQ = a and QR = b PS is twice the length of QR. a a b c c d <lid< li=""> d d d d d<th>2) The graph of $y = g(x)$ is shown below. y = g(x) is shown below. y = g(x) graph G The graph G is the reflection of $y = g(x)$ in the x-axis. Write down an equation of graph G.</th><th></th></lid<>	2) The graph of $y = g(x)$ is shown below. y = g(x) is shown below. y = g(x) graph G The graph G is the reflection of $y = g(x)$ in the x-axis. Write down an equation of graph G.	
Assessment topics	Mini assessment of each topic studied	PPE (all topics studied thus far)	PPE feedback Mini assessment of each topic studied	PPE (all topics)	Completing the PPE feedback	
Cross curricular inks/ Character Education	Music – links between mathematical sequences and rhythm patterns Use of graphs in ICT, Geography and Science	Direct and Inverse proportion used to derive scientific formulae Design Technology – use Computer Aided Design techniques for 3D modelling	Transformations are used in Art through cubism and tessellations of Escher Design Technology uses similarity and scale in planning ideas	Science – vectors linked to resultant force	Art – the transformations of reflection, rotation and translation are used to create repeated patterns such as Escher drawings	