In addition to Foundation tier content, Higher tier learners should also be able to

	Autumn 1	Autumn 2	Spring 1	$\begin{gathered} \text { Spring } \\ 2 \end{gathered}$	$\begin{gathered} \text { Summer } \\ 1 \end{gathered}$	$\begin{gathered} \text { Summer } \\ \mathbf{2} \\ \hline \end{gathered}$
Content Declarative knowledge 'I Know'	Sequences Linear sequences Quadratic sequences Special sequences Straight Line Graphs Gradients Real-World Graphs Graphs of real-world contexts Areas under graphs	Direct and Inverse Proportion Equivalent ratios Dividing quantities in a given ratio Ratios and fractions Direct proportion Inverse proportion Trigonometry Exact trigonometric ratios Area of a triangle Sine rule Cosine rule Algebraic Solution of Equations Quadratic equations	Transformations Combinations of transformations Similar Figures Enlargement Similar shapes Functions Inverse functions Composite functions	Circle Theorems Circle nomenclature Angles subtended at centre and circumference Angle in a semicircle Angles in the same segment Angle between radius and chord Angle between radius and tangent The alternate segment theorem Cyclic quadrilaterals Vectors Vector arithmetic and column vectors Non-Linear Graphs Trigonometric functions Equations of circles Parallel and perpendicular lines Polynomial and Exponential functions	Transformations of Graphs Translations and reflections Inequalities Inequalities in one variable Inequalities in two variables	Public exams
Skills Procedural Knowledge ‘I know how to'	Sequences Generate a sequence from a formula for the nth term. Find a formula for the nth term of an arithmetic sequence. Use subscript notation for position-to-term and term-to-term rules. Find a formula for the $n t h$ term of a simple quadratic sequence. Recognise sequences of triangular, square and cube numbers and simple arithmetic progressions.	Direct and Inverse Proportion Use the proportionality symbol and constant. Investigate contexts that lead to direct or inverse proportion, including those that involve a power or root. Formulate equations and solve problems involving a quantity in direct or inverse proportion to a power or root of another quantity. Trigonometry Know the exact values of $\sin \theta$ and $\cos \theta$ for $\theta=0,30,45,60$ and 90 degrees.	Transformations Perform a sequence of isometric transformations (reflections, rotations or translations) on a simple shape. Describe the sequence of isometric transformations (reflections, rotations or translations) needed to transform an object to its image and the changes and invariance achieved.	Circle Theorems Recognise isosceles triangles drawn within circles. Apply and prove that - the angle subtended by an arc at the centre is twice the angle at the circumference, - the angle on the circumference subtended by a diameter is a right angle, - two angles in the same segment are equal, - a radius or diameter bisects a chord if and only if it is perpendicular to the chord, - for a point P on the circumference, the radius or diameter through P is perpendicular to the tangent at P , - for a point P on the circumference, the angle between the tangent and a chord through P equals the angle subtended by the chord in the opposite segment, - the opposite angles of a cyclic quadrilateral are supplementary.	Transformations of Graphs Identify and sketch simple translations of a given graph. Identify and sketch translations and reflections of the graph, given its equation. Inequalities Solve quadratic inequalities in one variable.	

Recognise Fibonacci and quadratic sequences and simple geometric progressions. Generate and find nth terms of other sequences.

Straight Line Graphs

Find gradient from graph
using $\frac{\text { change in } y}{\text { change in } x}$.
Interpret straight line gradients as rates of change.

Velocity as the gradient of a displacement-time graph Calculate or estimate gradients of graphs and interpret in kinematic contexts using distance-time graphs, velocity-time graphs and financial graphs.

Apply the concepts of average and instantaneous rate of change (gradients of chords or tangents) in numerical, algebraic and graphical contexts.

Real-World Graphs

Recognise and interpret graphs that illustrate direct and inverse proportion.

Construct graphs in realworld contexts, such as distance-time, money conversion and temperature conversion

Calculate or estimate areas under graphs.
Interpret in the context of distance-time graphs and velocity-time graphs.

Know the exact values of $\tan \theta$ for $\theta=0,30,45$ and 60 degrees.

Manipulate Pythagoras'
Theorem and trigonometric
formulae, using algebraic expressions or exact trigonometry ratios to solve 3D problems.

Use 2D representations of 3D solids to identify right angles and hence solve problems by Pythagoras' Theorem and Trigonometry.

Know and apply the general sine formula to find the area for any triangle.
Know and apply the sine rule and the cosine rules to find lengths and angles

Algebraic Solution of

Equations

Rearrange and solve quadratic equations by completing the
square and by using the quadratic formula.

Set up and solve quadratic equations, include manipulation of algebraic fractions.

Similar Figures Prove that two triangles

 are congruent using the cases: 3 sides (SSS), 2 sides and the included angle, 2 angles and the included side (ASA), right angle, hypotenuse, side (RHS).Apply congruent triangles in calculations and simple proofs, for instance proving that the base angles of an isosceles triangle are equal

Prove that two triangles are similar.
Use similarity and ratios to determine missing sides or scale factors.

Identify the centre and positive integer or fractional scale factor of an enlargement of a simple shape. Perform such an enlargement on a simple shape.

Perform and recognise enlargements with negative scale factors.

Functions

Recap function machines with inputs and outputs. Interpret the reverse process as the 'inverse function'.
Interpret the succession of two functions as 'composite function'.

Vectors

Define different routes between stated vertices, including involving scalars and parallel vectors.
Use vectors to solve geometric proof in quadrilaterals and where vectors are given as simple scalar multiples.
Use vectors to solve geometric proof with vector defined in ratios.

Non-Linear Graphs

Identify intercepts and, using symmetry, the turning point of graphs of quadratic functions.

Find the roots of a quadratic equation algebraically.

Sketch graphs of quadratic functions, identifying the turning point by completing the square.

Recognise and sketch graphs of exponential functions in the form $y=k^{x}$ for positive k.

Use a table of values to plot other polynomial graphs and reciprocals.
Use a table of values or a formula to plot exponential graphs.

Recognise and sketch graphs of simple polynomial and reciprocal graphs.

Recognise and sketch the graphs of trig functions $y=\sin \theta, y=\cos \theta$ and $y=\tan \theta$.

Recognise and use the equation of a circle with centre at the origin.

Calculate the equation of a line representing a radius or diameter at a point on the circumference of a circle.

Calculate the equation of a tangent to a circle at a given point.

Solve (several) linear inequalities in two variables, representing the solution set on a graph.

Set up and solve (several) linear inequalities in two variables from context, representing the solution set on a graph.

Identify the solution sets of linear inequalities in two variables, using the convention of dashed and solid lines.

	3) Here is the velocity-time graph of a car for 50 seconds. Work out the average acceleration during the 50 seconds.	3) Solve $\begin{aligned} & 2 x^{2}=3 x+5 \\ & \frac{2}{x}-\frac{2}{x+1}=1 \end{aligned}$ 4) The diagram shows a cuboid ABCDEFGH. Calculate the size of angle ECA. Give your answer correct to 3 significant figures. 5) Sketch the graph of $\mathrm{f}(x)=x^{2}-5 x+10,$ showing the coordinates of the turning point and the coordinates of any intercepts with the coordinate axes.	2) Two prisms, A and B, are mathematically similar. The volume of prism A is $12000 \mathrm{~cm}^{3}$. The volume of prism B is 49 $152 \mathrm{~cm}^{3}$. The total surface area of prism B is 9728 cm^{2}. Calculate the total surface area of prism A. 3) $\mathrm{f}(x)=2 x^{2}$ and $\mathrm{g}(x)=4 x+3$. Calculate $\operatorname{gf}(x)$.	2) This diagram shows a trapezium PQRS $\overrightarrow{P Q}=\mathbf{a} \text { and } \overrightarrow{Q R}=\mathbf{b}$ PS is twice the length of $Q R$. Find in terms of \mathbf{a} and \mathbf{b}, expressions for: a) $\overrightarrow{Q P}$ b) $\overrightarrow{P R}$ c) $\overrightarrow{P S}$ 3) By completing the square, sketch the graph of the quadratic $y=x^{2}+2 x+4$	2) The graph of $y=$ $\mathrm{g}(x)$ is shown below. The graph \mathbf{G} is the reflection of $y=\mathrm{g}(x)$ in the x-axis. Write down an equation of graph \mathbf{G}.
Assessment topics	Mini assessment of each topic studied	PPE (all topics studied thus far)	PPE feedback Mini assessment of each topic studied	PPE (all topics)	Completing the PPE feedback
Cross curricular links/ Character Education	Music - links between mathematical sequences and rhythm patterns Use of graphs in ICT, Geography and Science	Direct and Inverse proportion used to derive scientific formulae Design Technology - use Computer Aided Design techniques for 3D modelling	Transformations are used in Art through cubism and tessellations of Escher Design Technology uses similarity and scale in planning ideas	Science - vectors linked to resultant force	Art - the transformations of reflection, rotation and translation are used to create repeated patterns such as Escher drawings

